DOI QR코드

DOI QR Code

[18F]FET PET is a useful tool for treatment evaluation and prognosis prediction of anti-angiogenic drug in an orthotopic glioblastoma mouse model

  • Kim, Ok-Sun (Korea Drug Development Platform using Radio-isotope, Korea Institute of Radiological & Medical Sciences) ;
  • Park, Jang Woo (Korea Drug Development Platform using Radio-isotope, Korea Institute of Radiological & Medical Sciences) ;
  • Lee, Eun Sang (Korea Drug Development Platform using Radio-isotope, Korea Institute of Radiological & Medical Sciences) ;
  • Yoo, Ran Ji (Korea Drug Development Platform using Radio-isotope, Korea Institute of Radiological & Medical Sciences) ;
  • Kim, Won-Il (College of Veterinary Medicine, Chonbuk National University) ;
  • Lee, Kyo Chul (Division of Applied RI, Korea Institute of Radiological & Medical Sciences) ;
  • Shim, Jae Hoon (Korea Drug Development Platform using Radio-isotope, Korea Institute of Radiological & Medical Sciences) ;
  • Chung, Hye Kyung (Korea Drug Development Platform using Radio-isotope, Korea Institute of Radiological & Medical Sciences)
  • Received : 2018.10.22
  • Accepted : 2018.12.07
  • Published : 2018.12.31

Abstract

O-2-$^{18}F$-fluoroethyl-l-tyrosine ($[^{18}F]FET$) has been widely used for glioblastomas (GBM) in clinical practice, although evaluation of its applicability in non-clinical research is still lacking. The objective of this study was to examine the value of $[^{18}F]FET$ for treatment evaluation and prognosis prediction of anti-angiogenic drug in an orthotopic mouse model of GBM. Human U87MG cells were implanted into nude mice and then bevacizumab, a representative anti-angiogenic drug, was administered. We monitored the effect of anti-angiogenic agents using multiple imaging modalities, including bioluminescence imaging (BLI), magnetic resonance imaging (MRI), and positron emission tomography-computed tomography (PET/CT). Among these imaging methods analyzed, only $[^{18}F]FET$ uptake showed a statistically significant decrease in the treatment group compared to the control group (P=0.02 and P=0.03 at 5 and 20 mg/kg, respectively). This indicates that $[^{18}F]FET$ PET is a sensitive method to monitor the response of GBM bearing mice to anti-angiogenic drug. Moreover, $[^{18}F]FET$ uptake was confirmed to be a significant parameter for predicting the prognosis of anti-angiogenic drug (P=0.041 and P=0.007, on Days 7 and 12, respectively, on Pearson's correlation; P=0.048 and P=0.030, on Days 7 and 12, respectively, on Cox regression analysis). However, results of BLI or MRI were not significantly associated with survival time. In conclusion, this study suggests that $[^{18}F]FET$ PET imaging is a pertinent imaging modality for sensitive monitoring and accurate prediction of treatment response to anti-angiogenic agents in an orthotopic model of GBM.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Gallego O. Nonsurgical treatment of recurrent glioblastoma. Curr Oncol 2015; 22(4): e273-281. https://doi.org/10.3747/co.22.2436
  2. Cao Y. Future options of anti-angiogenic cancer therapy. Chin J Cancer 2016; 35(2): 21. https://doi.org/10.1186/s40880-016-0084-4
  3. Kuusk T, Albiges L, Escudier B, Grivas N, Haanen J, Powles T, Bex A. Antiangiogenic therapy combined with immune checkpoint blockade in renal cancer. Angiogenesis 2017; 20(2): 205-215. https://doi.org/10.1007/s10456-017-9550-0
  4. Eisermann K, Fraizer G. The Androgen Receptor and VEGF: Mechanisms of Androgen-Regulated Angiogenesis in Prostate Cancer. Cancers (Basel) 2017; 9(4): 32. https://doi.org/10.3390/cancers9040032
  5. Hardee ME, Zagzag D. Mechanisms of glioma-associated neovascularization. Am J Pathol 2012; 181(4): 1126-1141. https://doi.org/10.1016/j.ajpath.2012.06.030
  6. Galldiks N, Langen KJ, Holy R, Pinkawa M, Stoffels G, Nolte KW, Kaiser HJ, Filss CP, Fink GR, Coenen HH, Eble MJ, Piroth MD. Assessment of treatment response in patients with glioblastoma using O-(2-18F-fluoroethyl)-L-tyrosine PET in comparison to MRI. J Nucl Med 2012; 53(7): 1048-1057. https://doi.org/10.2967/jnumed.111.098590
  7. Krcek R, Latzer P, Adamietz IA, Buhler H, Theiss C. Influence of vascular endothelial growth factor and radiation on gap junctional intercellular communication in glioblastoma multiforme cell lines. Neural Regen Res 2017; 12(11): 1816-1822. https://doi.org/10.4103/1673-5374.219030
  8. Fu P, He YS, Huang Q, Ding T, Cen YC, Zhao HY, Wei X. Bevacizumab treatment for newly diagnosed glioblastoma: Systematic review and meta-analysis of clinical trials. Mol Clin Oncol 2016; 4(5): 833-838. https://doi.org/10.3892/mco.2016.816
  9. Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 2005; 307(5706): 58-62. https://doi.org/10.1126/science.1104819
  10. Tobelem G. VEGF: a key therapeutic target for the treatment of cancer-insights into its role and pharmacological inhibition. Target Oncol 2007; 2(3): 153-164. https://doi.org/10.1007/s11523-007-0051-8
  11. Yanagisawa M, Yorozu K, Kurasawa M, Nakano K, Furugaki K, Yamashita Y, Mori K, Fujimoto-Ouchi K. Bevacizumab improves the delivery and efficacy of paclitaxel. Anticancer Drugs 2010; 21(7): 687-694.
  12. Borgstrom P, Bourdon MA, Hillan KJ, Sriramarao P, Ferrara N. Neutralizing anti-vascular endothelial growth factor antibody completely inhibits angiogenesis and growth of human prostate carcinoma micro tumors in vivo. Prostate 1998; 35(1): 1-10. https://doi.org/10.1002/(SICI)1097-0045(19980401)35:1<1::AID-PROS1>3.0.CO;2-O
  13. Bagri A, Berry L, Gunter B, Singh M, Kasman I, Damico LA, Xiang H, Schmidt M, Fuh G, Hollister B, Rosen O, Plowman GD. Effects of anti-VEGF treatment duration on tumor growth, tumor regrowth, and treatment efficacy. Clin Cancer Res 2010; 16(15): 3887-3900. https://doi.org/10.1158/1078-0432.CCR-09-3100
  14. Warren RS, Yuan H, Matli MR, Gillett NA, Ferrara N. Regulation by vascular endothelial growth factor of human colon cancer tumorigenesis in a mouse model of experimental liver metastasis. J Clin Invest 1995; 95(4): 1789-1797. https://doi.org/10.1172/JCI117857
  15. Mabuchi S, Terai Y, Morishige K, Tanabe-Kimura A, Sasaki H, Kanemura M, Tsunetoh S, Tanaka Y, Sakata M, Burger RA, Kimura T, Ohmichi M. Maintenance treatment with bevacizumab prolongs survival in an in vivo ovarian cancer model. Clin Cancer Res 2008; 14(23): 7781-7789. https://doi.org/10.1158/1078-0432.CCR-08-0243
  16. Zhang J, Wang S, Liu H, Du X, Chen X, Guo Y, Zhang J, Fang J, Zhang W. Quantitative MRI assessment of glioma response to bevacizumab in a mouse model. Int J Clin Exp Med 2017; 10(10): 14232-14243.
  17. Friedman HS, Prados MD, Wen PY, Mikkelsen T, Schiff D, Abrey LE, Yung WK, Paleologos N, Nicholas MK, Jensen R, Vredenburgh J, Huang J, Zheng M, Cloughesy T. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol 2009; 27(28): 4733-4740. https://doi.org/10.1200/JCO.2008.19.8721
  18. Vredenburgh JJ, Desjardins A, Herndon JE 2nd, Dowell JM, Reardon DA, Quinn JA, Rich JN, Sathornsumetee S, Gururangan S, Wagner M, Bigner DD, Friedman AH, Friedman HS. Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin Cancer Res 2007; 13(4): 1253-1259. https://doi.org/10.1158/1078-0432.CCR-06-2309
  19. Jakobsen JN, Hasselbalch B, Stockhausen MT, Lassen U, Poulsen HS. Irinotecan and bevacizumab in recurrent glioblastoma multiforme. Expert Opin Pharmacother 2011; 12(5): 825-833. https://doi.org/10.1517/14656566.2011.566558
  20. Odia Y, Iwamoto FM, Moustakas A, Fraum TJ, Salgado CA, Li A, Kreisl TN, Sul J, Butman JA, Fine HA. A phase II trial of enzastaurin (LY317615) in combination with bevacizumab in adults with recurrent malignant gliomas. J Neurooncol 2016; 127(1): 127-135. https://doi.org/10.1007/s11060-015-2020-x
  21. Heiland DH, Masalha W, Franco P, Machein MR, Weyerbrock A. Progression-free and overall survival in patients with recurrent Glioblastoma multiforme treated with last-line bevacizumab versus bevacizumab/lomustine. J Neurooncol 2016; 126(3): 567-575. https://doi.org/10.1007/s11060-015-2002-z
  22. Al-Abd AM, Alamoudi AJ, Abdel-Naim AB, Neamatallah TA, Ashour OM. Anti-angiogenic agents for the treatment of solid tumors: Potential pathways, therapy and current strategies - A review. J Adv Res 2017; 8(6): 591-605. https://doi.org/10.1016/j.jare.2017.06.006
  23. Ozel O, Kurt M, Ozdemir O, Bayram J, Akdeniz H, Koca D. Complete response to bevacizumab plus irinotecan in patients with rapidly progressive GBM: Cases report and literature review. J Oncol Sci 2016; 2(2-3): 87-94.
  24. Huang RY, Neagu MR, Reardon DA, Wen PY. Pitfalls in the neuroimaging of glioblastoma in the era of antiangiogenic and immuno/targeted therapy - detecting illusive disease, defining response. Front Neurol 2015; 6: 33.
  25. Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, Sorensen AG, Galanis E, Degroot J, Wick W, Gilbert MR, Lassman AB, Tsien C, Mikkelsen T, Wong ET, Chamberlain MC, Stupp R, Lamborn KR, Vogelbaum MA, van den Bent MJ, Chang SM. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 2010; 28(11): 1963-1972. https://doi.org/10.1200/JCO.2009.26.3541
  26. Norden AD, Drappatz J, Muzikansky A, David K, Gerard M, McNamara MB, Phan P, Ross A, Kesari S, Wen PY. An exploratory survival analysis of anti-angiogenic therapy for recurrent malignant glioma. J Neurooncol 2009; 92(2): 149-155. https://doi.org/10.1007/s11060-008-9745-8
  27. Nedergaard MK, Michaelsen SR, Perryman L, Erler J, Poulsen HS, Stockhausen MT, Lassen U, Kjaer A. Comparison of (18)F-FET and (18)F-FLT small animal PET for the assessment of anti-VEGF treatment response in an orthotopic model of glioblastoma. Nucl Med Biol 2016; 43(3): 198-205. https://doi.org/10.1016/j.nucmedbio.2015.12.002
  28. Hutterer M, Nowosielski M, Putzer D, Waitz D, Tinkhauser G, Kostron H, Muigg A, Virgolini IJ, Staffen W, Trinka E, Gotwald T, Jacobs AH, Stockhammer G. O-(2-18F-fluoroethyl)-L-tyrosine PET predicts failure of antiangiogenic treatment in patients with recurrent high-grade glioma. J Nucl Med 2011; 52(6): 856-864. https://doi.org/10.2967/jnumed.110.086645
  29. Schwarzenberg J, Czernin J, Cloughesy TF, Ellingson BM, Pope WB, Geist C, Dahlbom M, Silverman DH, Satyamurthy N, Phelps ME, Chen W. 3'-deoxy-3'-18F-fluorothymidine PET and MRI for early survival predictions in patients with recurrent malignant glioma treated with bevacizumab. J Nucl Med 2012; 53(1): 29-36. https://doi.org/10.2967/jnumed.111.092387
  30. Gulyas B, Halldin C. New PET radiopharmaceuticals beyond FDG for brain tumor imaging. Q J Nucl Med Mol Imaging 2012; 56(2): 173-190.
  31. Isselbacher KJ. Sugar and amino acid transport by cells in culture--differences between normal and malignant cells. N Engl J Med 1972; 286(17): 929-933. https://doi.org/10.1056/NEJM197204272861707
  32. BUSCH H, DAVIS JR, HONIG GR, ANDERSON DC, NAIR PV, NYHAN WL. The uptake of a variety of amino acids into nuclear proteins of tumors and other tissues. Cancer Res 1959; 19(10): 1030-1039.
  33. Holzgreve A, Brendel M, Gu S, Carlsen J, Mille E, Boning G, Mastrella G, Unterrainer M, Gildehaus FJ, Rominger A, Bartenstein P, Kalin RE, Glass R, Albert NL. Monitoring of Tumor Growth with [(18)F]-FET PET in a Mouse Model of Glioblastoma: SUV Measurements and Volumetric Approaches. Front Neurosci 2016; 10: 260.
  34. Ramasawmy R, Johnson SP, Roberts TA, Stuckey DJ, David AL, Pedley RB, Lythgoe MF, Siow B, Walker-Samuel S. Monitoring the Growth of an Orthotopic Tumour Xenograft Model: Multi- Modal Imaging Assessment with Benchtop MRI (1T), High-Field MRI (9.4T), Ultrasound and Bioluminescence. PLoS One 2016; 11(5): e0156162. https://doi.org/10.1371/journal.pone.0156162
  35. Jarzabek MA, Sweeney KJ, Evans RL, Jacobs AH, Stupp R, O'Brien D, Berger MS, Prehn JH, Byrne AT. Molecular imaging in the development of a novel treatment paradigm for glioblastoma (GBM): an integrated multidisciplinary commentary. Drug Discov Today 2013; 18(21-22): 1052-1066. https://doi.org/10.1016/j.drudis.2013.06.004
  36. Nedergaard MK, Michaelsen SR, Urup T, Broholm H, El Ali H, Poulsen HS, Stockhausen MT, Kjaer A, Lassen U. 18F-FET microPET and microMRI for anti-VEGF and anti-PlGF response assessment in an orthotopic murine model of human glioblastoma. PLoS One 2015; 10(2): e0115315. https://doi.org/10.1371/journal.pone.0115315
  37. Christoph S, Schlegel J, Alvarez-Calderon F, Kim YM, Brandao LN, DeRyckere D, Graham DK. Bioluminescence imaging of leukemia cell lines in vitro and in mouse xenografts: effects of monoclonal and polyclonal cell populations on intensity and kinetics of photon emission. J Hematol Oncol 2013; 6(1): 10. https://doi.org/10.1186/1756-8722-6-10
  38. Khalil AA, Jameson MJ, Broaddus WC, Lin PS, Dever SM, Golding SE, Rosenberg E, Valerie K, Chung TD. The Influence of Hypoxia and pH on Bioluminescence Imaging of Luciferase- Transfected Tumor Cells and Xenografts. Int J Mol Imaging 2013; 2013: 287697.
  39. O'Farrell AC, Shnyder SD, Marston G, Coletta PL, Gill JH. Noninvasive molecular imaging for preclinical cancer therapeutic development. Br J Pharmacol 2013; 169(4): 719-735. https://doi.org/10.1111/bph.12155
  40. Galldiks N, Law I, Pope WB, Arbizu J, Langen KJ. The use of amino acid PET and conventional MRI for monitoring of brain tumor therapy. Neuroimage Clin 2016; 13: 386-394.
  41. Jalali S, Chung C, Foltz W, Burrell K, Singh S, Hill R, Zadeh G. MRI biomarkers identify the differential response of glioblastoma multiforme to anti-angiogenic therapy. Neuro Oncol 2014; 16(6): 868-879. https://doi.org/10.1093/neuonc/nou040
  42. Gotz I, Grosu A-L, Spehl TS. Role of PET Imaging in Patients with High-Grade Gliomas Undergoing Anti- Angiogenic Therapy with Bevacizumab-Review of the Literature and Case Report. Eur Assoc NeuroOncology Mag 2014; 4(3):102-108.