DOI QR코드

DOI QR Code

Anti-inflammatory Activities of Cold Brew Coffee Using Dry Fermentation of Lactobacillus plantarum

건식발효를 이용한 유산균 더치 커피의 항염증 효과

  • Go, Seok Hyeon (Department of Marine Food Science and Technology, Gangneung-Wonju National University) ;
  • Monmai, Chaiwat (Department of Marine Food Science and Technology, Gangneung-Wonju National University) ;
  • Jang, A Yeong (Department of Marine Food Science and Technology, Gangneung-Wonju National University) ;
  • Lee, Hyungjae (Department of Food Engineering, Dankook University) ;
  • Park, Woo Jung (Department of Marine Food Science and Technology, Gangneung-Wonju National University)
  • 고석현 (강릉원주대학교 해양식품공학과) ;
  • 몬마이 차이왓 (강릉원주대학교 해양식품공학과) ;
  • 장아영 (강릉원주대학교 해양식품공학과) ;
  • 이형재 (단국대학교 식품공학과) ;
  • 박우정 (강릉원주대학교 해양식품공학과)
  • Received : 2018.05.03
  • Accepted : 2018.10.31
  • Published : 2018.11.30

Abstract

Coffee is a commonly consumed beverage that contains anti-inflammatory compounds such as caffeine, chlorogenic acid, cafestol, trigonelline, and kahweol. Lactobacillus plantarum is a lactic acid bacterium most frequently used in the fermentation of food products of plant origin. L. plantarum is able to degrade some food phenolic compounds and provide high value-added compounds such as powerful antioxidants or food additives approved as flavouring agents. In this study, we investigated the anti-inflammatory effects of coffee extract fermented by L. plantarum on RAW264.7 macrophages. In lipopolysaccharide-stimulated RAW264.7 cells, these coffee extracts exhibited anti-inflammatory activities through the reduction of nitric oxide (NO) production and inducible NO synthase expression. Fermented coffee extracts significantly decreased the expression of inflammatory cytokines such as tumor necrosis factor ${\alpha}$, interleukin $1{\beta}$, interleukin 6, and interferon ${\gamma}$. Cyclooxygenase-2, which is one of the key biomarkers for inflammation, was significantly suppressed. These results might be helpful for understanding the anti-inflammatory mechanism of fermented coffee extract on immune cells and, moreover, suggest that fermented coffee extract may be a beneficial anti-inflammatory agent.

커피는 전 세계적으로 가장 널리 음용되는 음료 중에 하나로, 항산화 및 항염증 활성을 나타내는 카페인, 클로로겐산, 카페스톨, 트리고넬린, 카와웰 등의 물질을 함유하고 있다. Lactobacillus plantarum은 식물성 식품의 발효에 가장 흔하게 사용되는 유산균으로, 식물에 풍부하게 함유되어 있는 페놀 화합물을 분해하여 고부가 가치의 항산화제 및 방향 성분을 생산한다. 본 연구에서는 L. plantarum을 이용한 발효커피를 제조하여 RAW264.7 대식세포에 대한 면역 조절 효과를 조사하였다. 커피 발효에는 에티오피아 예가체프(Ethiopia Yirgacheffe)와 과테말라 안티구아(Guatemala Antigua) 2종의 원두가 사용되었으며, Y2와 A2는 2%의 포도당, Y5와 A5는 5%의 포도당, 그리고 Y10과 A10은 10%의 포도당이 발효를 위해 첨가되었다. lipopolysaccharide에 의해 자극된 RAW264.7 세포에서 유산균 발효 커피 추출물은 nitric oxide 생성 및 inducible nitric oxide synthase, cyclooxygenase-2, tumor necrosis factor ${\alpha}$, interleukin $1{\beta}$, interleukin 6, interferon ${\gamma}$ 등의 면역 관련 유전자의 발현을 유의하게 억제하였으며, Y10과 A10 추출물이 다른 커피 추출물에 비해 상대적으로 높은 항산화 활성을 나타내었다. 반면에 IL-6의 경우에는 Y2와 A2 커피 추출물이 가장 높은 억제효과를 나타내었다. 본 연구 결과는 면역세포에 대한 유산균 발효 커피 추출물의 항염증 기전을 이해하는데 도움이 될 수 있으리라 생각되며, 또한 유산균 발효 커피 추출물은 유용한 항염증성 식품 소재로 이용될 수 있다고 판단된다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. Arendash GW, Schleif W, Rezai Zadeh K, Jackson EK, Zacharia LC, Cracchiolo JR, Shippy D, Tan J. 2006. Caffeine protects Alzheimer's mice against cognitive impairment and reduces brain beta-amyloid production. Neuroscience 142: 941-952. https://doi.org/10.1016/j.neuroscience.2006.07.021
  2. Ascherio A, Weisskopf MG, O'Reilly EJ, McCullough ML, Calle EE, Rodriguez C, Thun MJ. 2004. Coffee consumption, gender, and Parkinson's disease mortality in the cancer prevention study II cohort: the modifying effects of estrogen. Am. J. Epidemiol. 160: 977-984. https://doi.org/10.1093/aje/kwh312
  3. Bonita JS, Mandarano M, Shuta D, Vinson J. 2007. Coffee and cardiovascular disease: in vitro, cellular, animal, and human studies. Pharmacol. Res. 55: 187-198. https://doi.org/10.1016/j.phrs.2007.01.006
  4. Cao RA, Lee Y, You S. 2014. Water soluble sulfated-fucans with immune-enhancing properties from Ecklonia cava. Int. J. Biol. Macromol. 67: 303-311. https://doi.org/10.1016/j.ijbiomac.2014.03.019
  5. Cho SY, Park SJ, Kwon MJ, Jeong TS, Bok SH, Choi WY, Jeong W, Ryu SY, Do SH, Lee CS, Song JC, Jeong KS. 2003. Quercetin suppresses proinflammatory cytokines production through MAP kinases and NF-${\kappa}B$ pathway in lipopolysaccharide-stimulated macrophage. Mol. Cell. Biochem. 243: 153-160. https://doi.org/10.1023/A:1021624520740
  6. de Man JC, Rogosa MA, Elisabeth Sharpe M. 1960. A medium for the cultivation of Lactobacilli. J. Appl. Microbiol. 23: 130-135.
  7. de Vries MC, Vaughan EE, Kleerebezem M, de Vos WM. 2006. Lactobacillus plantarum-survival, functional and potential probiotic properties in the human intestinal tract. Int. Dairy J. 16: 1018-1028. https://doi.org/10.1016/j.idairyj.2005.09.003
  8. Dimmeler S, Zeiher AM. 1997. Nitric oxide and apoptosis: another paradigm for the double-edged role of nitric oxide. Nitric Oxide-Biol. Chem. 1: 275-281. https://doi.org/10.1006/niox.1997.0133
  9. Dinarello CA. 2000. Proinflammatory cytokines. Chest 118: 503-508. https://doi.org/10.1378/chest.118.2.503
  10. Ferruzzi MG. 2010. The influence of beverage composition on delivery of phenolic compounds from coffee and tea. Physiol. Behav. 100: 33-41. https://doi.org/10.1016/j.physbeh.2010.01.035
  11. Forstermann U, Schmidt HH, Pollock JS, Sheng H, Mitchell JA, Warner TD, Nakane M, Murad F. 1991. Isoforms of nitric oxide synthase. Characterization and purification from different cell types. Biochem. Pharmacol. 42: 1849-1857. https://doi.org/10.1016/0006-2952(91)90581-O
  12. Fritsch C, Heinrich V, Vogel RF, Toelstede S. 2016. Phenolic acid degradation potential and growth behavior of lactic acid bacteria in sunflower substrates. Food Microbiol. 57: 178-186. https://doi.org/10.1016/j.fm.2016.03.003
  13. Frost Meyer NJ, Logomarsino JV. 2012. Impact of coffee components on inflammatory markers: A review. J. Funct. Foods. 4: 819-830. https://doi.org/10.1016/j.jff.2012.05.010
  14. Gelatti U, Covolo L, Franceschini M, Pirali F, Tagger A, Ribero ML, Trevisi P, Martelli C, Nardi G, Donato F. 2005. Coffee consumption reduces the risk of hepatocellular carcinoma independently of its aetiology: a case-control study. J. Hepatol. 42: 528-534. https://doi.org/10.1016/j.jhep.2004.11.039
  15. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. 1982. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal. Biochem. 126: 131-138. https://doi.org/10.1016/0003-2697(82)90118-X
  16. Kim JK, Cho ML, Karnjanapratum S, Shin IS, You SG. 2011. In vitro and in vivo immunomodulatory activity of sulfated polysaccharides from Enteromorpha prolifera. Int. J. Biol. Macromol. 49: 1051-1058. https://doi.org/10.1016/j.ijbiomac.2011.08.032
  17. Kim JY, Jung KS, Lee KJ, Na HK, Chun HK, Kho YH, Jeong HG. 2004. The coffee diterpene kahweol suppress the inducible nitric oxide synthase expression in macrophages. Cancer Lett. 213: 147-154. https://doi.org/10.1016/j.canlet.2004.04.002
  18. Lala PK, Chakraborty C. 2001. Role of nitric oxide in carcinogenesis and tumour progression. Lancet. Oncol. 2: 149-156. https://doi.org/10.1016/S1470-2045(00)00256-4
  19. Lawrence T. 2009. The nuclear factor NF-kappa B pathway in inflammation. Cold Spring Harbor Perspect. Biol. 1: a001651.
  20. Leroy F, De Vuyst L. 2004. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci. Technol. 15: 67-78. https://doi.org/10.1016/j.tifs.2003.09.004
  21. Liang N, Kitts DD. 2014. Antioxidant property of coffee components: assessment of methods that define mechanisms of action. Molecules 19: 19180-19208. https://doi.org/10.3390/molecules191119180
  22. Liu Y, Kitts DD. 2011. Confirmation that the Maillard reaction is the principle contributor to the antioxidant capacity of coffee brews. Food Res. Int. 44: 2418-2424. https://doi.org/10.1016/j.foodres.2010.12.037
  23. Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-408. https://doi.org/10.1006/meth.2001.1262
  24. Mayer B, Hemmens B. 1997. Biosynthesis and action of nitric oxide in mammalian cells. Trends Biochem. Sci. 22: 477-481. https://doi.org/10.1016/S0968-0004(97)01147-X
  25. Natella F, Nardini M, Giannetti I, Dattilo C, Scaccini C. 2002. Coffee drinking influences plasma antioxidant capacity in humans. J. Agric. Food Chem. 50: 6211-6216. https://doi.org/10.1021/jf025768c
  26. Rodriguez H, Curiel JA, Landete JM, de las Rivas B, Lopez de Felipe F, Gomez-Cordoves C, Mancheno JM, Munoz R. 2009. Food phenolics and lactic acid bacteria. Int. J. Food Microbiol. 132: 79-90. https://doi.org/10.1016/j.ijfoodmicro.2009.03.025
  27. Salazar Martinez E, Willett WC, Ascherio A, Manson JE, Leitzmann MF, Stampfer MJ, Hu FB. 2004. Coffee consumption and risk for type 2 diabetes mellitus. Ann. Intern. Med. 140: 1-8. https://doi.org/10.7326/0003-4819-140-1-200401060-00005
  28. Sawatari Y, Hirano T, Yokota A. 2006. Development of food grade media for the preparation of Lactobacillus plantarum starter culture. J. Gen. Appl. Microbiol. 52: 349-356. https://doi.org/10.2323/jgam.52.349
  29. Schroder K, Hertzog PJ, Ravasi T, Hume DA. 2004. Interferon-gamma: an overview of signals, mechanisms and functions. J. Leukoc. Biol. 75: 163-189. https://doi.org/10.1189/jlb.0603252
  30. St-Denis A, Chano F, Tremblay P, St-Pierre Y, Descoteaux A. 1998. Protein kinase C-alpha modulates lipopolysaccharide-induced functions in a murine macrophage cell line. J. Biol. Chem. 273: 32787-32792. https://doi.org/10.1074/jbc.273.49.32787
  31. Surh YJ, Chun KS, Cha HH, Han SS, Keum YS, Park KK, Lee SS. 2001. Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutat. Res. 480-481: 243-268. https://doi.org/10.1016/S0027-5107(01)00183-X
  32. Tak PP, Firestein GS. 2001. NF-kappa B: a key role in inflammatory diseases. J. Clin. Invest. 107: 7-11. https://doi.org/10.1172/JCI11830
  33. Tavani A, La Vecchia C. 2004. Coffee, decaffeinated coffee, tea and cancer of the colon and rectum: a review of epidemiological studies, 1990-2003. Cancer Causes Control. 15: 743-757. https://doi.org/10.1023/B:CACO.0000043415.28319.c1
  34. Tverdal A, Skurtveit S. 2003. Coffee intake and mortality from liver cirrhosis. Ann. Epidemiol. 13: 419-423. https://doi.org/10.1016/S1047-2797(02)00462-3
  35. Tworoger SS, Gertig DM, Gates MA, Hecht JL, Hankinson SE. 2008. Caffeine, alcohol, smoking, and the risk of incident epithelial ovarian cancer. Cancer 112: 1169-1177. https://doi.org/10.1002/cncr.23275
  36. Viatour P, Merville MP, Bours V, Chariot A. 2005. Phosphorylation of NF-kappa B and I kappa B proteins: implications in cancer and inflammation. Trends Biochem. Sci. 30: 43-52. https://doi.org/10.1016/j.tibs.2004.11.009
  37. Zhao Y, Liu J. 2016. Anti-inflammatory effects of p-coumaric acid in LPS-stimulated RAW264.7 cells: involvement of NF-${\kappa}B$ and MAPKs pathways. Med. Chem. 06: 327-330.
  38. Zvrko E, Gledovic Z, Ljaljevic A. 2008. Risk factors for laryngeal cancer in Montenegro. Arh. Hig. Rada Toksikol. 59: 11-18.