DOI QR코드

DOI QR Code

Measurement and Interpretation of Undergraduate Students' Writing about the Experiments of the Photoelectric Effect

  • Jho, Hunkoog (Department of General Education, Dankook University) ;
  • Ji, Youngrae (Department of General Education, Dankook University)
  • Received : 2018.09.18
  • Accepted : 2018.10.16
  • Published : 2018.11.30

Abstract

This study aimed at examining undergraduate students' writing about experiments related to the photoelectric effect and giving some implications for experiment education. Thus, this study analyzed 26 students' reports about three kinds of experiments: measuring Planck's constant, comparing the photocurrent and the photovoltage across the intensity of light, and comparing the photocurrent and the photovoltage across the frequency of light. In the measurements, less than 25% of the students expressed the data to the correct number of significant figures even though two-thirds of the students successfully obtained the data given in the manual. In terms of interpretation, the students were not aware of the physical meanings of the detailed parts in the graphs. Even though over 50% of the students drew a line relating photocurrent to voltage, no students compared the theoretical to the empirical data or made a judgment as to whether of not the background theory really fit the experiment. The research findings showed that insufficient knowledge and skills for physics inquiry may be an obstacle in performing the experiments well.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. M. K. E. L. Planck, Verhandlungen Dtsch. Physik. Ges. 2, 202 (1900).
  2. M. K. E. L. Planck, Verhandlungen Dtsch. Physik. Ges. 2, 237 (1900)
  3. A. Einstein, Ann. Phys. 322, 132 (1905). https://doi.org/10.1002/andp.19053220607
  4. J. G. Cramer, The Quantum Handshake: Entanglement, Nonlocality, and Transactions (Springer, New York, 2015).
  5. G. McClellan, E. M. Didwall and C. J. Rigby, Am. J. Phys. 46, 832 (1978). https://doi.org/10.1119/1.11199
  6. A. K. Knudsen, Am. J. Phys. 51, 725 (1983). https://doi.org/10.1119/1.13155
  7. R. A. Powell, Am. J. Phys. 46, 1046 (1978). https://doi.org/10.1119/1.11493
  8. G. D. Earle, B. L. Copp, J. H. Klenzig and R. L. Bishop, Am. J. Phys. 71, 766 (2003). https://doi.org/10.1119/1.1574040
  9. J. D. Barnett and H. T. Stokes, Am. J. Phys. 56, 86 (1988). https://doi.org/10.1119/1.15387
  10. M. A. Asikainen and P. E. Hirvonen, Am. J. Phys. 77, 658 (2009). https://doi.org/10.1119/1.3129093
  11. M. Jammer, The Conceptual Development of Quantum Mechanics (Tomash Publishers, Los Angeles, 1989).
  12. R. Gomatam, Philos. Sci. 74, 736 (2007). https://doi.org/10.1086/525618
  13. J. Rudnick and D. S. Tannhauser, Am. J. Phys. 44, 796 (1976). https://doi.org/10.1119/1.10130
  14. R. Zangara and E. Lanzara, Am. J. Phys. 61, 1114 (1993). https://doi.org/10.1119/1.17358
  15. L. van Rens, A. Pilot and J. van der Schee, J. Res. Sci. Teach. 47, 788 (2010). https://doi.org/10.1002/tea.20357
  16. L. B. Flick and N. G. Lederman, Scientific Inquiry and Nature of Science: Implications for Teaching, Learning, and Teacher Education (Springer, Dordrecht, 2006).
  17. H. Jho, J. Res. Curr. Instr. 22, 208 (2018).
  18. M. K. Kim, H. G. Oh and J. Park, J. Korean Assoc. Res. Sci. Educ. 16, 51 (1996).
  19. Y. Y. Cheong and J. Song, New Phys.: Sae Mulli 61, 479 (2011). https://doi.org/10.3938/NPSM.61.479
  20. H. J. Ha, S. H. Sohn and J. S. Kim, New Phys.: Sae Mulli 65, 602 (2015). https://doi.org/10.3938/NPSM.65.602
  21. L. Changshi and L. W. Li, Optik 127, 7359 (2016). https://doi.org/10.1016/j.ijleo.2016.05.045
  22. H. Jho, New Phys.: Sae Mulli 68, 869 (2018). https://doi.org/10.3938/NPSM.68.869
  23. Ministry of Education, National science curriculum, Report No. 2015-74, 2015.