DOI QR코드

DOI QR Code

Li2SrSiO4-αNα에 첨가된 Eu2+의 광학적 특성

Optical Properties of the Eu2+ Doped Li2SrSiO4-αNα

  • 투고 : 2018.09.14
  • 심사 : 2018.10.17
  • 발행 : 2018.11.30

초록

고상 반응법을 이용하여 처음으로 $Li_2SrSiO_{4-{\alpha}}N_{\alpha}:Eu^{2+}$ 형광체를 제조하고, 제조된 시료들에 대한 결정성 및 광학적 특성을 비교, 분석하였다. 제조된 시료들은 모두 230~530 nm의 넓은 영역에서 효율적인 여기 특성을 보이고 있다. 본 연구에 사용된 시료들 모두 568 nm에서 최대 발광 세기를 보이는데 이는 현재 상용 중인 $YAG:Ce^{3+}$에 비하여 최대 발광 세기가 약 18 nm 장파장 영역으로 이동함을 의미한다. 따라서 450 nm의 빛을 발하는 청색 LED와 결합하면, $YAG:Ce^{3+}$를 사용하여 상용화된 기존의 백색광보다 보다 따듯한 느낌의 백색광원용 형광체로 활용될 수 있으리라 판단한다. 또한 질소의 원료 물질로 사용된 $Si_3N_4$의 분말크기가 마이크론인 경우에 광활성 이온인 $Eu^{2+}$가 첨가되지 않아도 모체발광이 일어난다는 것을 처음으로 알게 되었다.

$Li_2Sr_{1-x}Eu_xSiO_{4-{\alpha}}N_{\alpha}$ ($Li_2SrSiO_{4-{\alpha}}N_{\alpha}:Eu^{2+}$) phosphors were synthesized by using a solid state reaction (SSR) method with submicron $Si_3N_4$ and nano $Si_3N_4$ powders as the sources of Si and N, and the optical properties of those phosphors were studied. The studied phosphors showed efficient excitation characteristics over the broad range from 230 to 530 nm. Also, They showed broad emission spectra covering a range from 500 to 700 nm, with a peak at 568 nm, which was shifted longer wavelength by 18 nm as compared with that of commercial $YAG:Ce^{3+}$. Combined with a 450 nm blue LED chip, the results support the application of the $Li_2SrSiO_{4-{\alpha}}N_{\alpha}:Eu^{2+}$ phosphor as a luminescent material for a white-light source thaat is warmer than the commercial $YAG:Ce^{3+}$ white-light source. In addition, the $Li_2SrSiO_{4-{\alpha}}N_{\alpha}$ phosphors prepared from a submicron $Si_3N_4$ powder was found to emit a previously unreported self-activated luminescence in $Li_2SrSiO_{4-{\alpha}}N_{\alpha}$.

키워드

과제정보

연구 과제 주관 기관 : 한국연구재단

참고문헌

  1. M. G. Craford, Commercial Light Emitting Diode Technology, Nato Science Series E (Kluwer Academic Publishers, Dordrecht, 1996), Vol. 324, Chap. 30, pp. 323-331.
  2. E. F. Schubert and J. K. Kim, Science 308, 1274 (2005). https://doi.org/10.1126/science.1108712
  3. R. J. Xie and N. Hirosaki, Adv. Mater. 8, 588 (2007).
  4. L. Chen, C. C. Lin, C. W. Yeh and R. S. Liu, Materials 3, 2172 (2010). https://doi.org/10.3390/ma3032172
  5. Y. Sato, N. Takahashi and S. Sato, Jpn. J. Appl. Phys. 35, L838 (1996). https://doi.org/10.1143/JJAP.35.L838
  6. Y. D. Huh, J. H. Shim, Y. H. Kim and Y. R. Do, J. Electrochem. Soc. 150, H57 (2003). https://doi.org/10.1149/1.1535914
  7. B. G. Kim and E. Y. Hong, Chemword 37, 29 (1997).
  8. S. Nakamura and G. Fasol, The Blue Laser Diode: GeN Based Light Emitters and Lasers (Springer, Berlin, Germany, 1997), Chap. 2, pp. 7-20.
  9. J. Zhou, F. Huang, J. Xu, H. Chen and Y. Wang, J. Mater. Chem. C 3, 3023 (2015). https://doi.org/10.1039/C4TC02783C
  10. Y. Matsushima, T. Koide, M. Hiro-Oka, M. Shida and A. Sato et al., J. Am. Ceram. Soc. 98, 1236 (2015). https://doi.org/10.1111/jace.13463
  11. Q. Gong, Z. Hu, B. J. Deibert, T. J. Emge and S. J. Teat et al., J. Am. Chem. Soc. 136, 16724 (2014). https://doi.org/10.1021/ja509446h
  12. Wikipedia: Ionic radius, https://en.wikipedia.org/wiki/Ionic_radius (acessed Aug. 14, 2018).
  13. J. H. Kim and K. Y. Jung, J. Lumin. 131, 1487 (2011). https://doi.org/10.1016/j.jlumin.2011.03.054
  14. P. Dorenbos, J. Phys.: Condens. Matter 17, 8103 (2005). https://doi.org/10.1088/0953-8984/17/50/027
  15. T. Q. Khanh, P. Bodrogi, Q. T. Vinh and H. Winkler, LED Lighting Techology and Perception (Wiley-VCH, 2014), p. 83.
  16. Y. Zhang, X. Qiao, J. Wan, L.-a. Wu and B. Chen et al., J. Mater. Chem. C 5, 8952 (2017). https://doi.org/10.1039/C7TC02909H
  17. A. Mao, Z. Zhao and Y. Wang, RSC Advances 7, 42634 (2017). https://doi.org/10.1039/C7RA07085C
  18. T. Kim, P. Namkhai, K. Jang, Y. Horibe and H.-J. Woo, New Phys.: Sae Mulli 68, 593 (2018). https://doi.org/10.3938/NPSM.68.593
  19. J. Zhou, F. Huang, J. Xu, H. Chen and Y. Wang, J. Mater. Chem. C 3, 3023 (2015). https://doi.org/10.1039/C4TC02783C
  20. S. Park and T. Vogt, J. Phys. Chem. C 114, 11576 (2010).
  21. C. Zhang and J. Lin, Chem. Soc. Rev. 41, 7938 (2012). https://doi.org/10.1039/c2cs35215j
  22. P. Burner, A. D. Sontakke, M. Salagn, M. Bardet and J.-M. Mouescaet al., Angew. Chem. Int. Ed. 56, 13995 (2017). https://doi.org/10.1002/anie.201706070
  23. Y. Li, C. Ni, C. C. Lin, F. Pan and R.-S. Liu et al., Opt. Mater. 36, 1871 (2014). https://doi.org/10.1016/j.optmat.2014.03.020
  24. M. Xie, H. Liang, Y. Huang and Y. Tao, Opt. Express 20, 15891 (2012). https://doi.org/10.1364/OE.20.015891