DOI QR코드

DOI QR Code

증착 속도에 따른 펜타센 박막 트랜지스터의 성능 연구

Performance of Pentacene-based Thin-film Transistors Fabricated at Different Deposition Rates

  • 투고 : 2018.10.02
  • 심사 : 2018.10.17
  • 발행 : 2018.11.30

초록

본 연구는 각각 다른 증착 속도로 제작된 유기 박막 트랜지스터(organic thin film transistor, OTFT)의 전하 이동도와 문턱 전압을 측정하여 전기적 성질을 분석했다. OTFT의 활성층으로, 펜타센 (pentacene)을 $0.05{\AA}/s{\sim}1.14{\AA}/s$의 증착 속도에 따라 50 nm의 두께로 진공 열 증착했다. 드레인-소스 전극은 금 (Au)을 50 nm의 두께로 증착했다. 펜타센 증착 속도가 $0.05{\AA}/s$일 때 전하 이동도는 $1.9{\times}10^{-1}cm^2/V{\cdot}s$였고, 증착 속도가 $0.4{\AA}/s$로 증가함에 따라 전하 이동도는 $5.2{\times}10^{-1}cm^2/V{\cdot}s$로 증가했으며, 증착 속도가 $1.14{\AA}/s$로 증가함에 따라 전하 이동도는 $6.5{\times}10^{-1}cm^2/V{\cdot}s$로 감소했다. 따라서, 펜타센기반의 OTFT의 전하 이동도는 열 증착 속도에 의존함을 관측하였다.

We studied the electrical properties of organic thin-film transistors (OTFTs) fabricated at different deposition rates by measuring the field-effect mobility and the threshold voltages. As the active layer, pentacene thin film with a thickness of 50 nm was deposited at a rate of $0.05{\AA}/s$ to $1.14{\AA}/s$. The thickness of the drain-source gold electrode was 50 nm. The mobility was $1.9{\times}10^{-1}cm^2/V{\cdot}s$ at a deposition rate of $0.05{\AA}/s$, the mobility increased to $5.2{\times}10^{-1}cm^2/V{\cdot}s$ when the deposition rate was increased to $0.4{\AA}/s$, and then the mobility decreased to $6.5{\times}10^{-1}cm^2/V{\cdot}s$ when the deposition rate decreased to $1.14{\AA}/s$. Thus, the mobility of pentacene OTFTs was observed to depend on the thermal deposition rate.

키워드

과제정보

연구 과제 주관 기관 : 한국연구재단

참고문헌

  1. J. E. Lilienfeld, Method and Apparatus for Controlling Electric Currents, US Patent 1,745,175, 1930.
  2. A. Tsumura, H. Koezuka and T. Ando, Appl. Phys. Lett. 49, 1210 (1986). https://doi.org/10.1063/1.97417
  3. D. Guo, S. Ikeda, K. Saiki, H. Miyazoe and K. Terashima, J. Appl. Phys. 99, 094502 (2006). https://doi.org/10.1063/1.2193055
  4. C. H. Wang, C. Y. Hsieh and J. C. Hwang, Adv. Mater. 23, 1630 (2011). https://doi.org/10.1002/adma.201004071
  5. C. Luo, A. K. K. Kyaw, L. A. Perez, S. Patel and M. Wang et al., Nano Lett. 14, 2764 (2014). https://doi.org/10.1021/nl500758w
  6. H. Sirringhaus, Adv. Mater. 26, 1319 (2014). https://doi.org/10.1002/adma.201304346
  7. C.-a. Di, Y. Liu, G. Yu and D. Zho, Acc. Chem. Res. 42, 1573 (2009). https://doi.org/10.1021/ar9000873
  8. R. Ruiz, D. Choudhary, B. Nickel, T. Toccoli and K. C. Chang et al., Chem. Mater. 16, 4497 (2004). https://doi.org/10.1021/cm049563q
  9. H. Yanagisawa, T. Tamaki, M. Nakamura and K. Kudo, Thin Solid Films 464-465, 398 (2004). https://doi.org/10.1016/j.tsf.2004.06.065
  10. D. He, J. Qiao, L. Zhang, J. Wang and T. Lan et al., Sci. Adv. 3, 1701186 (2017). https://doi.org/10.1126/sciadv.1701186
  11. S. Jung, C. Kim, Y. Bonnassieux and G. Horowitz, J. Phys. D: Appl. Phys. 48, 035106 (2015). https://doi.org/10.1088/0022-3727/48/3/035106
  12. Y.-W. Wang and H.-L. Cheng, Solid State Electron. 53, 1107 (2009). https://doi.org/10.1016/j.sse.2009.05.003
  13. I. V. K. Rao, S. Mandal, M. Katiyar, in International Workshop on Physics of Semiconductor Devices (IIT Mumbai, India, Dec. 16-20, 2007), pp. 625-627.