DOI QR코드

DOI QR Code

Immunological Recognition by Artificial Neural Networks

  • Xu, Jin (Asia Pacific Center for Theoretical Physics) ;
  • Jo, Junghyo (School of Computational Sciences, Korea Institute for Advanced Study)
  • Received : 2018.10.19
  • Published : 2018.12.30

Abstract

The binding affinity between the T-cell receptors (TCRs) and antigenic peptides mainly determines immunological recognition. It is not a trivial task that T cells identify the digital sequences of peptide amino acids by simply relying on the integrated binding affinity between TCRs and antigenic peptides. To address this problem, we examine whether the affinity-based discrimination of peptide sequences is learnable and generalizable by artificial neural networks (ANNs) that process the digital experimental amino acid sequence information of receptors and peptides. A pair of TCR and peptide sequences correspond to the input for ANNs, while the success or failure of the immunological recognition correspond to the output. The output is obtained by both theoretical model and experimental data. In either case, we confirmed that ANNs could learn the immunological recognition. We also found that a homogenized encoding of amino acid sequence was more effective for the supervised learning task.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. N. K. Jerne, Science 229, 1057 (1985). https://doi.org/10.1126/science.4035345
  2. D. Dasgupta, IEEE Sys Man Cybern, 873 (1997).
  3. J. D. Farmer, N. H. Packard and A. S. Perelson, Physica D: Nonlinear Phenomena 22, 187 (1986). https://doi.org/10.1016/0167-2789(86)90240-X
  4. A. Murugan, T. Mora, A. M. Walczak and C. G. Callan, Jr., Proc. Natl. Acad. Sci. U. S. A. 109, 16161 (2012). https://doi.org/10.1073/pnas.1212755109
  5. R. Vita, J. A. Overton, J. A. Greenbaum, J. Ponomarenko, J. D. Clark et al., Nucleic Acids Res. 43 (Database issue), D405 (2015). https://doi.org/10.1093/nar/gku938
  6. R. L. Warren, D. Freeman, T. Zeng, G. Choe, S. Munro et al., Genome Res. 21, 790 (2011). https://doi.org/10.1101/gr.115428.110
  7. I. V. Zvyagin, M. V. Pogorelyy, M. E. Ivanova, E. A. Komech, M. Shugay et al., Proc. Natl. Acad. Sci. U. S. A. 111, 5980 (2014).
  8. H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat et al., Nucleic Acids Res. 28, 235 (2000). https://doi.org/10.1093/nar/28.1.235
  9. N. C. Toussaint, P. Donnes and O. Kohlbacher, PLoS Comput. Biol. 4, e1000246 (2008). https://doi.org/10.1371/journal.pcbi.1000246
  10. N. C. Toussaint and O. Kohlbacher, Nucleic Acids Res. 37 (Web Server issue), W617 (2009). https://doi.org/10.1093/nar/gkp293
  11. T. Vider-Shalit, S. Raffaeli and Y. Louzoun, Mol. Immunol. 44, 1253 (2007). https://doi.org/10.1016/j.molimm.2006.06.003
  12. T. Saethang, O. Hirose, I. Kimkong, V. A. Tran, X. T. Dang et al., J. Immunol. Methods 387, 293 (2013). https://doi.org/10.1016/j.jim.2012.09.016
  13. C. W. Tung and S. Y. Ho, Bioinformatics 23, 942 (2007). https://doi.org/10.1093/bioinformatics/btm061
  14. C. W. Tung, M. Ziehm, A. Kamper, O. Kohlbacher and S. Y. Ho, BMC Bioinformatics 12, 446 (2011). https://doi.org/10.1186/1471-2105-12-446
  15. A. Kosmrlj, A. K. Jha, E. S. Huseby, M. Kardar and A. K. Chakraborty, Proc. Natl. Acad. Sci. U. S. A. 105, 16671 (2008). https://doi.org/10.1073/pnas.0808081105
  16. J. K. Percus, O. E. Percus and A. S. Perelson, Proc. Natl. Acad. Sci. U. S. A. 90, 1691 (1993). https://doi.org/10.1073/pnas.90.5.1691
  17. V. Detours, R. Mehr and A. S. Perelson, J. Immunol. 164, 121 (2000). https://doi.org/10.4049/jimmunol.164.1.121
  18. M. Shugay, D. V. Bagaev, I. V. Zvyagin, R. M. Vroomans, J. C. Crawfor et al., Nucleic Acids Res. 46, D419 (2018). https://doi.org/10.1093/nar/gkx760
  19. N. Tickotsky, T. Sagiv, J. Prilusky, E. Shifrut and N. Friedman, Bioinformatics 33, 2924 (2017). https://doi.org/10.1093/bioinformatics/btx286
  20. H. S. Robins, P. V. Campregher, S. K. Srivastava, A. Wacher, C. J. Turtle et al., Blood 114, 4099 (2009).
  21. H. S. Robins, S. K. Srivastava, P. V. Campregher, C. J. Turtle, J. Andriesen et al., Sci. Transl. Med. 2, 47ra64 (2010).
  22. H. Li, C. Tang and N. S. Wingreen, Phys. Rev. Lett. 79, 765 (1997). https://doi.org/10.1103/PhysRevLett.79.765
  23. S. Miyazawa and R. L. Jernigan, J. Mol. Biol. 256, 623 (1996). https://doi.org/10.1006/jmbi.1996.0114
  24. A. Kosmrlj, M. Kardar and A. K. Chakraborty, J. Stat. Phys. 149, 203 (2012). https://doi.org/10.1007/s10955-011-0403-8
  25. A. Kosmrlj, A. K. Chakraborty, M. Kardar and E. I. Shakhnovich, Phys. Rev. Lett. 103 (2009).
  26. M. S. Park, S. Y. Park, K. R. Miller, E. J. Collins and H. Y. Lee, Mol. Immunol. 56, 81 (2013). https://doi.org/10.1016/j.molimm.2013.04.011
  27. A. K. Sewell, Nature Reviews Immunology 12, 668 (2012).
  28. H. R. Chen, A. K. Chakraborty and M. Kardar, Phys. Rev. E 97 (2018).
  29. M. E. Birnbaum, J. L. Mendoza, D. K. Sethi, S. Dong, J. Glanville et al., Cell 157, 1073 (2014). https://doi.org/10.1016/j.cell.2014.03.047
  30. J. J. Calis, R. J. de Boer and C. Kesmir, PLoS Comput. Biol. 8, e1002412 (2012). https://doi.org/10.1371/journal.pcbi.1002412
  31. B. D. Stadinski, K. Shekhar, I. Gomez-Tourino, J. Jung, K. Sasaki et al., Nat. Immunol. 17, 946 (2016). https://doi.org/10.1038/ni.3491
  32. D. L. Chao, M. P. Davenport, S. Forrest and A. S. Perelson, Eur. J. Immunol. 35, 3452 (2005). https://doi.org/10.1002/eji.200535098
  33. V. Detours, R. Mehr and A. S. Perelson, J. Theor. Biol. 200, 389 (1999). https://doi.org/10.1006/jtbi.1999.1003
  34. V. Detours and A. S. Perelson, Proc. Natl. Acad. Sci. U. S. A. 96, 5153 (1999). https://doi.org/10.1073/pnas.96.9.5153
  35. D. E. Rumelhart, G. E. Hinton and R. J. Williams, Nature 323, 533 (1986). https://doi.org/10.1038/323533a0
  36. L. A. Segel and I. R. Cohen, Design principles for the immune system and other distributed autonomous system (Oxford University Press, New York, 2001).