DOI QR코드

DOI QR Code

Crystal Structure and Magnetic Properties of Sodium-Iron Phosphates NaFe0.9Mn0.1PO4 Cathode Material

  • Received : 2018.11.13
  • Accepted : 2018.11.22
  • Published : 2018.12.30

Abstract

The sodium-iron phosphate maricite-$NaFe_{0.9}Mn_{0.1}PO_4$ was synthesized using the ball mill method. The crystal structure and magnetic properties of the prepared materials were studied using X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and $M{\ddot{o}}ssbauer$ spectroscopy. Structural refinement of maricite-$NaFe_{0.9}Mn_{0.1}PO_4$ was analyzed using the FullProf program. From the XRD patterns, the crystal structure of maricite-$NaFe_{0.9}Mn_{0.1}PO_4$ was found to be orthorhombic with the space group Pmnb. The lattice parameters of maricite-$NaFe_{0.9}Mn_{0.1}PO_4$ are as follows: $a_0=6.866{\AA}$, $b_0=8.988{\AA}$, $c_0=5.047{\AA}$, and $V=311.544{\AA}^3$. Maricite-$NaFePO_4$ has an edge-sharing structure that consists of $FeO_6$ octahedral. Under an applied field of 100 Oe, the temperature dependences of zero-field-cooled (ZFC) and field-cooled (FC) curves were measured from 4.2 to 295 K. $M{\ddot{o}}ssbauer$ spectra were also recorded at various temperatures ranging from 4.2 to 295 K. We thus confirmed that the $N{\acute{e}}el$ temperature of $NaFe_{0.9}Mn_{0.1}PO_4$ ($T_N=14K$) was lower than that of maricite-$NaFePO_4$ ($T_N=15K$).

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. S. M. Ohb, S. T. Myung, J. Hassound and B. Scrosati, Electrochem. Commun. 22, 149 (2012). https://doi.org/10.1016/j.elecom.2012.06.014
  2. J. Kim et al., Energy Environ. Sci. 8, 540 (2015). https://doi.org/10.1039/C4EE03215B
  3. Y. Fang, Q. Liu, L. Xiao, X. Ai, H. Yang and Y. Cao, ACS Appl. Mater. Interfaces 7, 7977 (2015).
  4. B. U. Ko, H. Choi, T. Kouh, S. J. Kim and C. S. Kim, AIP Adv. 7, 055715 (2017). https://doi.org/10.1063/1.4977068
  5. M. Shin and J. Son, J. Korean Phys. Soc. 72, 703 (2018). https://doi.org/10.3938/jkps.72.703
  6. W. J. Kwon, I. K. Lee, C. H. Rhee and C. S. Kim, J. Appl. Phys. 111, 07E139 (2012). https://doi.org/10.1063/1.3677867
  7. T. Boyadzhieva, V. Koleva and R. Stoyanova, Phys. Chem. Chem. Phys. 19, 12730 (2017). https://doi.org/10.1039/C7CP01947E
  8. N. T. M. Hien, J. H. Chung, X. Chen, W. J. Kwon, I. Yan and C. S. Kim, J. Raman Spectrosc. 46, 1161 (2015). https://doi.org/10.1002/jrs.4736
  9. M. M. Rahman, I. Sultana, S. Mateti, J. Liu, N. Sharma and Y. Chen, J. Mater. Chem. A 5, 114 (2017).
  10. J. K. Hwang et al., J. Power Source 377, 80 (2018). https://doi.org/10.1016/j.jpowsour.2017.12.003
  11. R. Kapaev et al., J. Solid State Electrochem. 21, 2373 (2017). https://doi.org/10.1007/s10008-017-3592-5
  12. Y. Liu, N. Zhang, F. Wang, X. Liu, L. Jiao and L. Fan, Adv. Funct. Mater. 28, 1801917 (2018). https://doi.org/10.1002/adfm.201801917
  13. G. Ali et al., ACS Appl. Mater. Interfaces 8, 15422 (2016). https://doi.org/10.1021/acsami.6b04014
  14. J. Molenda, A. Kulka, A. Milewska, W. Zajac and K. Swierczek, Materials 6, 1656 (2013). https://doi.org/10.3390/ma6051656
  15. J. Yao, K. Konstantinov, G. X. Wang and H. K. Liu, J. Solid State Electrochem. 11, 177 (2007).
  16. S. J. Moon and C. S. Kim, J. Korean Phys. Soc. 53, 1589 (2008). https://doi.org/10.3938/jkps.53.1589
  17. N. V. Kosova, V. R. Podugolnikov, E. T. Devyatkina and A. B. Slobodyuk, Mater. Res. Bull. 60, 849 (2014). https://doi.org/10.1016/j.materresbull.2014.09.081
  18. H. Choi, M. H. Kim, T. Kouh and C. S. Kim, Sci. Adv. Mater. 10, 682 (2018). https://doi.org/10.1166/sam.2018.3146
  19. W. Kim, C. H. Rhee, H. J. Kim, S. J. Moon and C. S. Kim, Appl. Phys. Lett. 96, 242505 (2010). https://doi.org/10.1063/1.3455312
  20. R. Ingalls, Phys. Rev. 133, A787 (1964). https://doi.org/10.1103/PhysRev.133.A787
  21. P. Ravindran, R. Vidya, H. Fjellvag and A. Kjekshus, Phys. Rev. B 77, 134448 (2008). https://doi.org/10.1103/PhysRevB.77.134448
  22. H. N. Ok, Mossbauer spectroscopy (Minumsa, Seoul, 1983), Chap. 2, p. 32.

Cited by

  1. Crystal Structures and Local Environments of NASICON-Type Na3FeV(PO4)3 and Na4FeV(PO4)3 Positive Electrode Materials for Na-Ion Batter vol.33, pp.13, 2018, https://doi.org/10.1021/acs.chemmater.1c01457