DOI QR코드

DOI QR Code

Fabrication and Characterization of Cu3SbS4 Solar Cell with Cd-free Buffer

  • Han, Gyuho (Department of Physics, Incheon National University) ;
  • Lee, Ji Won (Department of Physics, Incheon National University) ;
  • Kim, JunHo (Department of Physics, Incheon National University)
  • Received : 2018.11.21
  • Accepted : 2018.11.22
  • Published : 2018.11.30

Abstract

We have grown famatinite $Cu_3SbS_4$ films by using sulfurization of Cu/Sb stack film. Sulfurization at $500^{\circ}C$ produced famatinite $Cu_3SbS_4$ phase, while $400^{\circ}C$ and $450^{\circ}C$ sulfurization exhibited unreacted and mixed phases. The fabricated $Cu_3SbS_4$ film showed S-deficiency, and secondary phase of $Cu_{12}Sb_4S_{13}$. The secondary phase was confirmed by X-ray diffraction, Raman spectroscopy, photoluminescence and external quantum efficiency measurements. We have also fabricated solar cell in substrate type structure, ITO/ZnO/(Zn,Sn)O/$Cu_3SbS_4$/Mo/glass, where $Cu_3SbS_4$ was used as a absorber layer and (Zn,Sn)O was employed as a Cd-free buffer. Our best cell showed power conversion efficiency of 0.198%. Characterization results of $Cu_3SbS_4$ absorber indicates deep defect (due to S-deficiency) and low shunt resistance (due to $Cu_{12}Sb_4S_{13}$ phase). Thus in order to improve the cell efficiency, it is required to grow high quality $Cu_3SbS_4$ film with no S-deficiency and no secondary phase.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu and D. B. Mitzi, Adv. Energy Mater. 4, 1301465 (2014). https://doi.org/10.1002/aenm.201301465
  2. O. Gunawan, T. K. Todorov and D. B. Mitzi, Appl. Phys. Lett. 97, 233506 (2010). https://doi.org/10.1063/1.3522884
  3. T. Gokmen, O. Gunawan, T. K. Todorov and D. B. Mitzi, Appl. Phys. Lett. 103, 103506 (2013). https://doi.org/10.1063/1.4820250
  4. J. V. Embden, K. Latham, N. W. Duffy and Y. Tachibana, J. Am. Chem. Soc. 135, 11562 (2013). https://doi.org/10.1021/ja402702x
  5. C. T. Crespo, J. Phys. Chem. C 120, 7959 (2016). https://doi.org/10.1021/acs.jpcc.6b00316
  6. W. Septina, S. Ikeda, Y. Iga, T. Harada and M. Matsumura, Thin Solid Films 550, 700 (2014). https://doi.org/10.1016/j.tsf.2013.11.046
  7. L.Wang, B. Yan, Z. Xia, M. Leng, Y. Zhou, D. J. Xue, J. Zhong, L. Gao, H. Song and J. Tang, Sol. Energy Mater. Sol. Cells 144, 33 (2016). https://doi.org/10.1016/j.solmat.2015.08.016
  8. N. D. Franzer, N. R. Paudel, C. Xiao and Y. Yan, in PVSC 2014. IEEE. 40th (2014), p. 2326.
  9. U. Chalaphati, B. Poornaprakash and S-H. Park, Ceramic International 43, 5229 (2017). https://doi.org/10.1016/j.ceramint.2017.01.048
  10. T. Shi, A-J. Yin, M. Al-Jassim and Y. Yan, Appl. Phys. Lett. 103, 152105 (2013). https://doi.org/10.1063/1.4824770
  11. A. Hultqvist, C. Platzer-Bjorkman, U. Zimmermann, M. Edoff and T. Torndahl, Prog. Photovolt.: Res. Appl. 20, 883 (2012). https://doi.org/10.1002/pip.1153
  12. C. Platzer-Bjorkman, C. Frisk, J. K. Larsen, T. Ericson, S-Y. Li, J. J. S. Scragg, J. Keller, F. Larsson and T. Torndahl, Appl. Phys. Lett. 107, 243904 (2015). https://doi.org/10.1063/1.4937998
  13. D. B. Khadka and J. Kim, CrystEngComm 15, 10500 (2013). https://doi.org/10.1039/c3ce41387j
  14. S. Kim, J. Kim, T. R. Rana, K-W. Kim and M-H. Kwon, Curr. Appl. Phys. 18, 191 (2018). https://doi.org/10.1016/j.cap.2017.12.004
  15. S. A. McClary, R. B. Balow and R. Agrawal, J. Mater. Chem. C 6, 10538 (2018). https://doi.org/10.1039/C8TC02762E
  16. C. An, Y. Jin, K. Tang and Y. Qian, J. Mater. Chem. 13, 301 (2003). https://doi.org/10.1039/b210703a
  17. M. Bella, S. Blayac, C. Rivero, V. Serradeil and P. Boulet, Computational Material Science 108, 264 (2015). https://doi.org/10.1016/j.commatsci.2015.06.038
  18. R. Jeanloz and M. L. Johnson, Phys. Chem. Minerals 11, 52 (1984). https://doi.org/10.1007/BF00309375
  19. S. H. Chaki, J. P. Tailor and M. P. Deshpande, Materials Science in Semiconductor Processing 27, 577 (2014). https://doi.org/10.1016/j.mssp.2014.07.038
  20. P. Skacha, E. Buixaderas, J. Plasil, J. Sejkora, V. R. Golias and V. Vlcek, The Canadian Mineralogist 52, 501 (2014). https://doi.org/10.3749/canmin.52.3.501
  21. T. Rath, A. J. MacLachian, M. D. Brown and S. A. Haque, J. Mater. Chem. A 3, 24155 (2015). https://doi.org/10.1039/C5TA05777A
  22. L. Yu, R. S. Kokenyesi, D. A. Keszler and A. Zunger, Adv. Energy Mater 3, 43 (2013). https://doi.org/10.1002/aenm.201200538
  23. C. Yan, Z. Su, E. Gu, T. Cao, J. Yang, J. Liu, F. Liu, Y. Lai, J. Li and Y. Liu, RSC Adv. 2, 10481 (2012). https://doi.org/10.1039/c2ra21554c
  24. S. J. Ahn, S. Jung, J. Gwak, A. Cho, K. Shin, K. Yoon, D. Park, H. Cheong and J. H. Yun, Appl. Phys. Lett. 97, 021905 (2010). https://doi.org/10.1063/1.3457172

Cited by

  1. Solution-Processed CuSbS2 Thin Films and Superstrate Solar Cells with CdS/In2S3 Buffer Layers vol.3, pp.8, 2018, https://doi.org/10.1021/acsaem.0c01296