DOI QR코드

DOI QR Code

Development of the Full Package of Gyrotron Simulation Code

  • Sawant, Ashwini (Department of Electrical Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Choi, EunMi (Department of Physics, Ulsan National Institute of Science and Technology (UNIST))
  • Received : 2018.10.11
  • Accepted : 2018.11.19
  • Published : 2018.11.30

Abstract

A complete code-package for gyrotron simulation to analyze its performance is under development in UNIST, Korea. We first time report the present status of the code-package named as UNIST Gyrotron Design Tool (UGDT). It can perform design simulations for gyrotron's interaction cavity, RF window, and the essential mode calculations including the study of mode competition. We will discuss about its salient features, theory, numerical implementation, and its calculation result for 95 GHz UNIST Gyrotron. Moreover, we will validate its capability to perform the mode competition calculation for fundamental and second harmonic modes.

Keywords

Acknowledgement

Supported by : National Fusion Research Institute (NFRI) of Korea

References

  1. M. V. Kartikeyan, E. Borie and M. Thumm, Gyrotrons: high-power microwave and millimeter wave technology (Springer Science & Business Media, 2013).
  2. G. S. Nusinovich, Introduction to the Physics of Gyrotrons (JHU Press, 2004).
  3. A. W. Fliflet, R. C. Lee, S. H. Gold, W. M. Manheimer and E. Ott, Phys. Rev. A 43, 6166 (1991). https://doi.org/10.1103/PhysRevA.43.6166
  4. B. Levush and T. Antonsen, IEEE Trans. Plasma Sci. 18, 260 (1990). https://doi.org/10.1109/27.55895
  5. S. Kern, Forschungszentrum Karlsruhe FZKA, 5837 (1996).
  6. M. Botton, T. M. Antonsen, B. Levush, K. T. Nguyen and A. N. Vlasov, IEEE Trans. Plasma Sci. 26, 882 (1998). https://doi.org/10.1109/27.700860
  7. R. Jain and M. V. Kartikeyan, Prog. Electromagn. Res. 22, 379 (2010). https://doi.org/10.2528/PIERB10061508
  8. K. A. Avramides, I. G. Pagonakis, C. T. Iatrou and J. L. Vomvoridis, EPJ Web of Conferences 32, 04016 (2012).
  9. S. Alberti, T. Tran, K. Avramides, F. Li and J-P. Hogge, in 36th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz) (2011).
  10. U. Singh, N. Kumar, H. Khatun, N. Kumar, V. Yadav, A. Kumar, M. Sharma, M. Alaria, A. Bera and P. Jain, Fusion Eng. Des. 88, 2898 (2013). https://doi.org/10.1016/j.fusengdes.2013.06.001
  11. A. Singh, B. Ravi Chandra and P. K. Jain, Prog. Electromagn. Res. 42, 75 (2012). https://doi.org/10.2528/PIERB12050905
  12. T. Saito, Y. Tatematsu, Y. Yamaguchi, S. Ikeuchi, S. Ogasawara, N. Yamada, R. Ikeda, I. Ogawa and T. Idehara, Phys. Rev. Lett. 109, 155001 (2012). https://doi.org/10.1103/PhysRevLett.109.155001
  13. B. Danly and R. J. Temkin, The Physics of fluids 29, 561 (1986). https://doi.org/10.1063/1.865446
  14. V. Bratman, A. Savilov and T. Chang, Radiophys. Quantum Electron. 58, 660 (2016). https://doi.org/10.1007/s11141-016-9638-1
  15. J. Neilson, in Joint 29th International Conference on Infrared and Millimeter Waves and 12th International Conference on Terahertz Electronics (2004).
  16. Crystran Ltd, https://www.crystran.co.uk/userfiles/files/design-of-pressure-windows.pdf.
  17. S. G. Kim, A. Sawant, I. Lee, D. Kim, M. Choe, J-H. Won, J. Kim, J. So, W. Jang and E. Choi, J. Infrared, Millimeter, Terahertz Waves 37, 209 (2016). https://doi.org/10.1007/s10762-015-0221-1