DOI QR코드

DOI QR Code

Magnetic properties of Mn54Al46C2.44/Sm2Fe17N3 and Mn54Al46C2.44/Fe65Co35 composites

  • Qian, Hui-Dong (Powder and Ceramic Division, Korea Institute of Materials Science) ;
  • Si, Ping-Zhan (Powder and Ceramic Division, Korea Institute of Materials Science) ;
  • Lim, Jung Tae (Powder and Ceramic Division, Korea Institute of Materials Science) ;
  • Kim, Jong-Woo (Powder and Ceramic Division, Korea Institute of Materials Science) ;
  • Park, Jihoon (Powder and Ceramic Division, Korea Institute of Materials Science) ;
  • Choi, Chul-Jin (Powder and Ceramic Division, Korea Institute of Materials Science)
  • Received : 2018.10.01
  • Accepted : 2018.10.16
  • Published : 2018.11.30

Abstract

Ferromagnetic ${\tau}-phase$ $Mn_{54}Al_{46}C_{2.44}$ particles were synthesized, and its composites with commercial $Sm_2Fe_{17}N_3$ and synthesized $Fe_{65}Co_{35}$ powders were fabricated. Smaller grain size than the single domain size of the $Mn_{54}Al_{46}C_{2.44}$ without obvious grain boundaries and secondary phases is the origin for the low intrinsic coercivity. It was confirmed that the magnetic properties of the $Mn_{54}Al_{46}C_{2.44}$ can be enhanced by magnetic exchange coupling with the hard magnetic $Sm_2Fe_{17}N_3$ and soft magnetic $Fe_{65}Co_{35}$. The high degrees of the exchange coupling were verified by calculating first derivative curves. Thermo-magnetic stabilities of the composites from 100 to 400 K were measured and compared. It was demonstrated that the $Mn_{54}Al_{46}C_{2.44}$ based composites containing $Sm_2Fe_{17}N_3$ and $Fe_{65}Co_{35}$ could be promising candidates for future permanent magnetic materials with the proper control of purity, magnetic properties, etc.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. A. Sakuma, J. Phys. Soc. Jpn. 63, 1422 (1993).
  2. J. H. Park, Y. K. Hong, S. Bae, J. J. Lee, J. Jalli, G. S. Abo, N. Neveu, S. G. Kim, C. J. Choi and J. G. Lee, J. Appl. Phys. 107, 09A731 (2010). https://doi.org/10.1063/1.3337640
  3. T. Chen and W. E. Stutius, IEEE Trans. Magn. 10, 581 (1974). https://doi.org/10.1109/TMAG.1974.1058367
  4. S. M. Kim, H. J. Moon, H. B. Jung, S. M. Kim, H. S. Lee, H. I. Choi-Yim and W. Y. Lee, J. All. Comp. 708, 1245 (2017). https://doi.org/10.1016/j.jallcom.2017.03.067
  5. J. G. Lee, P. Li, C. J. Choi and X. L. Dong, This Solid Films 519, 81 (2010). https://doi.org/10.1016/j.tsf.2010.07.063
  6. H. Yamamoto, U. S. Patent US3, 661, 567, (9 May 1972).
  7. T. Ohtani, N. Kato, S. Kojima, Y. Sakamoto, M. Tsukahara, K. Kojima, I. Konno and T. Kubo, U. S. Patent US3, 944, 445, (16 March 1976).
  8. T. Kubo, T. Ohtani, S. Kojima, N. Kato, K. Kojima, Y. Sakamoto, I. Konno and M. Tsukahara, U. S. Patent US3, 976, 519, (24 August 1976).
  9. Y. Sakamoto, N. Kato and T. Ohtani, U. S. Patent US4, 051, 706, 4 October 1977.
  10. T. Ohtani, N. Kato, S. Kojima, K. Kojima, Y. Sakamoto, I. Konno, M. Tsukahara and T. Kubo, IEEE Trans. Magn. MAG-13, 1328 (1977).
  11. E. F. Kneller and R. Hawig, IEEE Trans. Magn. 27, 3588 (1991). https://doi.org/10.1109/20.102931
  12. Y. Liu, A. George, R. Skomski and D. J. Sellmyer, Appl. Phys. Lett. 99, 172504 (2011). https://doi.org/10.1063/1.3656038
  13. H. Zeng, S. Sun, J. Li, Z. L. Wang and J. P. Liu, Appl. Phys. Lett. 85, 792 (2004). https://doi.org/10.1063/1.1776632
  14. B. Ma, H. Wang, H. Zhao, C. Sun, R. Acharya and J. P. Wang, J. Appl. Phys. 109, 083907 (2011). https://doi.org/10.1063/1.3569845
  15. M. Marinescu, J. F. Liu, M. J. Bonder and G. C. Hadjipanayis, J. Appl. Phys. 103, 07E120 (2008). https://doi.org/10.1063/1.2830956
  16. C. W. Kim, Y. H. Kim, H. G. Cha, J. C. Kim and Y. S. Kang, Mol. Cryst. Liq. Cryst. 472, 155 (2007).
  17. Y. Shen, Y. He, M. Q. Huang, D. Lee, S. Bauser, A. Higgins, C. Chen and S. Liu, J. Appl. Phys. 99, 08B520 (2006). https://doi.org/10.1063/1.2172582
  18. D. Wang, N. Poudyal, C. Rong, Y. Zhang, M. J. Kramer and J. P. Liu, J. Magn. Magn. Mater. 324, 2836 (2012). https://doi.org/10.1016/j.jmmm.2012.04.018
  19. N. V. Rama Rao, A. M. Gabay and G. C. Hadjipanayis, IEEE Trans. Magn. 49, 3255 (2013). https://doi.org/10.1109/TMAG.2013.2240274
  20. J. H. Park, Y. K. Hong, W. C. Lee, S. G. Kim, C. Rong, N. Poudyal, J. P. Liu and C. J. Choi, Scientific Reports 7, 4960 (2017). https://doi.org/10.1038/s41598-017-04632-6
  21. A. L. Patterson, Phys. Rev. 56, 978 (1939). https://doi.org/10.1103/PhysRev.56.978
  22. T. Klemmer, D. Hoydick, H. Okumura, B. Zhang and W. A. Soffa, Scripta. Metall. Mater. 33, 1793 (1995). https://doi.org/10.1016/0956-716X(95)00413-P
  23. G. F. Korznikova, J. Microsc. 239, 239 (2010). https://doi.org/10.1111/j.1365-2818.2010.03372.x
  24. C.W. Chen, J. Appl. Phys. 32, S348 (1961). https://doi.org/10.1063/1.2000465

Cited by

  1. Movable and immovable magnets for two machines vol.63, pp.2, 2020, https://doi.org/10.3233/jae-190087
  2. Recent developments of manganese-aluminium as rare-earth-free magnets vol.9, pp.4, 2018, https://doi.org/10.12989/amr.2020.9.4.323
  3. Microstructure and magnetic properties of (Mn54Al46)98C2 magnets fabricated by liquid-phase sintering with the Mn65Ga35 as an additive vol.534, pp.None, 2018, https://doi.org/10.1016/j.jmmm.2021.168037