DOI QR코드

DOI QR Code

Feasibility Study of Cylindrically Diffusing 532 nm Wavelength for Treatment of Pancreatic Cancer

  • Park, Jin-Seok (Department of Internal Medicine, Inha University School of Medicine) ;
  • Jeong, Seok (Department of Internal Medicine, Inha University School of Medicine) ;
  • Lee, Don Haeng (Department of Internal Medicine, Inha University School of Medicine) ;
  • Zheng, Hong-Mei (National Center of Efficacy Evaluation for the Development of Health Products Targeting Digestive Disorders (NCEED)) ;
  • Kang, Hyun Wook (Department of Biomedical Engineering and Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University) ;
  • Bak, Jinoh (Interdisciplinary Program of Marine-Bio, Electrical & Mechanical Engineering, Pukyong National University) ;
  • Choi, Jongman (Bluecore Company)
  • Received : 2018.09.27
  • Accepted : 2018.10.16
  • Published : 2018.11.30

Abstract

Laser ablation may provide a minimally invasive palliative treatment for pancreatic cancer. The aim of the current study was to assess the feasibility of a 532-nm laser equipped with a cylindrical light diffuser for the treatment of pancreatic cancer. Monolayers of BxPC-3 human pancreatic cancer cell were exposed to 532 nm laser light. Power levels of 5 - 7 W were used to uniformly target the entire cell colonies for 60 and 120 seconds. The cells were incubated for 24 hours after treatment and viabilities were determined by using a MTT assay. Laser ablation was performed by using the cylindrical light diffuser on six pancreatic tumor tissues obtained from pancreatic cancer xenograft mouse models, which were exposed to the 532 nm light at 5W or 7W for 10 to 30 seconds. In the in vitro study, the survival rates of the pancreatic cancer cells were reduced by 6.6% to 98.9% after the treatment, and the survival rates were reduced by increasing laser power and/or irradiation time. In the pancreatic tumor tissues, a homogenous circular ablation zone was observed in all tumors and the ablation distance induced by the laser irradiation showed to be constant from the diffuser to all directions (standard deviation, 0.3 - 1.3 mm). Ablation distance and area increased with increasing laser power and/or irradiation time. The 532 nm laser effectively killed pancreatic cancer cells, and the cylindrical light diffuser was found to be suitable for laser ablation as it provided uniform ablation in pancreatic cancer.

Keywords

Acknowledgement

Supported by : Korea Health Industry Development Institute (KHIDI)

References

  1. R. L. Siegel, K. D. Miller and A. Jemal, Cancer statistics 65, 5 (2015).
  2. Y. Zhang, J. Huang, M. Chen and L. R. Jiao, Pancreatology 12, 227 (2012). https://doi.org/10.1016/j.pan.2012.03.057
  3. P. J. Hosein, J. Macintyre, C. Kawamura, J. C. Maldonado, V. Ernani, A. Loaiza-Bonilla, G. Narayanan, A. Ribeiro, L. Portelance and J. R. Merchan, BMC Cancer 12, 199 (2012). https://doi.org/10.1186/1471-2407-12-199
  4. A. S. Cunha, A. Rault, C. Laurent, X. Adhoute, V. Vendrely, G. Bellannee, R. Brunet, D. Collet and B. Masson, J. Am. Coll. Surg. 201, 359 (2005). https://doi.org/10.1016/j.jamcollsurg.2005.04.008
  5. S. Gourgou-Bourgade, C. Bascoul-Mollevi, F. Desseigne, M. Ychou, O. Bouche, R. Guimbaud, Y. Becouarn, A. Adenis, J. Raoul and V. Boige, Journal of clinical oncology 31, 23 (2012).
  6. M. Cantore, R. Girelli, A. Mambrini, I. Frigerio, G. Boz, R. Salvia, A. Giardino, M. Orlandi, A. Auriemma and C. Bassi, Br. J. Surg. 99, 1083 (2012). https://doi.org/10.1002/bjs.8789
  7. S. P. Haen, P. L. Pereira, H. R. Salih, H. G. Rammensee and C. Gouttefangeas, Clin. Dev. Immunol. 2011, 160250 (2011).
  8. C. Pacella, G.Mauri, G. Achille, D. Barbaro, G. Bizzarri, P. De Feo, E. Di Stasio, R. Esposito, G. Gambelunghe and I. Misischi, The Journal of Clinical Endocrinology & Metabolism 100, 3903 (2015). https://doi.org/10.1210/jc.2015-1964
  9. G. Tian and T. Jiang, Medicine (Baltimore) 96, e6597 (2017). https://doi.org/10.1097/MD.0000000000006597
  10. G. Francica, A. Petrolati, E. Di Stasio, S. Pacella, R. Stasi and C. M. Pacella, Am. J. Roentgenol. 199, 1393 (2012). https://doi.org/10.2214/AJR.11.7850
  11. F. Di Matteo, M. Martino, R. Rea, M. Pandolfi, C. Rabitti, G. M. Masselli, S. Silvestri, C. M. Pacella, E. Papini, F. Panzera, S. Valeri, R. Coppola and G. Costamagna, Gastrointest. Endosc. 72, 358 (2010). https://doi.org/10.1016/j.gie.2010.02.027
  12. V. Arienti, S. Pretolani, C. M. Pacella, F. Magnolfi, B. Caspani, G. Francica, A. S. Megna, R. Regine, M. Sponza and E. Antico, Radiology 246, 947 (2008). https://doi.org/10.1148/radiol.2463070390
  13. C. Rosenberg, Y. Tadir, D. Braslavsky, B. Fisch, Z. Karni and J. Ovadia, Lasers Surg. Med. 10, 66 (1990). https://doi.org/10.1002/lsm.1900100114
  14. M. Ueki, C. Inoki, M. Ueda, A. Tsutsumi, M. Nakazato and N. Daikuzono, Lasers in Surgery and Medicine 18, 178 (1996). https://doi.org/10.1002/(SICI)1096-9101(1996)18:2<178::AID-LSM8>3.0.CO;2-P
  15. T. J. Vogl, R. Straub, K. Eichler, O. Sollner and M. G. Mack, Radiology 230, 450 (2004). https://doi.org/10.1148/radiol.2302020646
  16. F. M. Di Matteo, P. Saccomandi, M. Martino, M. Pandolfi, M. Pizzicannella, V. Balassone, E. Schena, C. M. Pacella, S. Silvestri and G. Costamagna, Feasibility of EUS-guided Nd: YAG laser ablation of unresectable pancreatic adenocarcinoma, Gastrointest. Endosc. (2018).
  17. G. S. Pancar, F. Aydin, N. Senturk, Y. Bek, M. T. Canturk and A. Y. Turanli, Journal of Cosmetic and Laser Therapy 13, 138 (2011). https://doi.org/10.3109/14764172.2011.594058
  18. H. W. Kang, J. Kim and Y. S. Peng, Lasers in Surgery and Medicine 42, 237 (2010). https://doi.org/10.1002/lsm.20895
  19. R. Malek, AUA-Update 23, 153 (2004).
  20. J. Bak and H. W. Kang, Lasers in medical science 32, 993 (2017). https://doi.org/10.1007/s10103-017-2199-5
  21. H. W. Kang, J. Kim and J. Oh, J. Biomed. Opt. 17, 118001 (2012). https://doi.org/10.1117/1.JBO.17.11.118001
  22. T. H. Nguyen, Y. Rhee, J. Ahn and H. W. Kang, Optics express 23, 20829 (2015). https://doi.org/10.1364/OE.23.020829