DOI QR코드

DOI QR Code

The Influence of Confining Parameters on the Ground State Properties of Interacting Electrons in a Two-dimensional Quantum Dot with Gaussian Potential

  • Gulveren, Berna (Physics Department, Faculty of Science, Selcuk University)
  • Received : 2018.08.06
  • Published : 2018.11.30

Abstract

In this work, the ground-state properties of an interacting electron gas confined in a two-dimensional quantum dot system with the Gaussian potential ${\upsilon}(r)=V_0(1-{\exp}(-r^2/p))$, where $V_0$ and p are confinement parameters, are determined numerically by using the Thomas-Fermi approximation. The shape of the potential is modified by changing the $V_0$ and the p values, and the influence of the confining potential on the system's properties, such as the chemical energy, the density profile, the kinetic energy, the confining energy, etc., is analyzed for both the non-interacting and the interacting cases. The results are compared with those calculated for a harmonic potential, and excellent agreement is obtained in the limit of high p values for both the non-interacting and the interacting cases.

Keywords

References

  1. X. Leyronas and M. Combescot, Solid State Comm. 119, 631 (2001). https://doi.org/10.1016/S0038-1098(01)00288-5
  2. D. Bimberg, M. Grundmann and N. N. Ledentsov, Quantum Dot Heterostructures (Wiley, Chichester, 1999).
  3. M. Russ, A. Lorke, D. Reuter and P. Schafmeister, Physica E 22, 506 (2004). https://doi.org/10.1016/j.physe.2003.12.056
  4. Y. Xiong and X. Zhang, IEE J. Quantum Electronics 54, 2000109 (2018).
  5. C. M. Imperato, G. A. Ranepura, L. I. Deych and I. L Kuskovsky, J. of Electronic Mater. 47, 4325 (2018). https://doi.org/10.1007/s11664-018-6241-6
  6. I. D. Amico, Microelect. J. 37, 1440 (2006). https://doi.org/10.1016/j.mejo.2006.05.004
  7. M. Sahin, J. of Phys. Condens. Matter 30, 205301 (2018). https://doi.org/10.1088/1361-648X/aabb7f
  8. A. E. Kavruk, M. Sahin and U. Atav, J. Phys. D:Appl. Phys. 47, 295302 (2014). https://doi.org/10.1088/0022-3727/47/29/295302
  9. A. Bera, A. Ghosh and M. Ghosh, Opt. Mater. 69, 352 (2017). https://doi.org/10.1016/j.optmat.2017.04.062
  10. M. Godlewski, V. Y. Ivanov, P. J. Bergman, B. Monemar, Z. Golacki and G. Karczewski, J. Alloys and Compd. 341, 8 (2002). https://doi.org/10.1016/S0925-8388(02)00088-9
  11. J. S. Kim, H. Kang, C. C. Byeon, M. S. Jeong and S-Y. Yim, J. Korean Phys. Soc. 55, 1051 (2009). https://doi.org/10.3938/jkps.55.1051
  12. J. Drbohlavova, V. Adam, R. Kizek and J. Hubalek, Int. J. Mol. Sci. 10, 656 (2009). https://doi.org/10.3390/ijms10020656
  13. L. Jacak, P. Hawrylak and A. Wojs, Quantum Dots (Berlin, Springer, 1998).
  14. L. Jacak, Eur. J. Phys. 21, 487 (2000). https://doi.org/10.1088/0143-0807/21/6/301
  15. N. F. Johnson, J. of Phys.: Condens. Matter 7, 965 (1995). https://doi.org/10.1088/0953-8984/7/6/005
  16. E. H. Lieb, J. P. Solovej and J. Yngvason, Phys. Rev. B 51, 10646 (1995). https://doi.org/10.1103/PhysRevB.51.10646
  17. J-B. Xia, Phys. Rev. B 40, 8500 (1989). https://doi.org/10.1103/PhysRevB.40.8500
  18. P. C. Sercel and K. J. Vahala, Phys. Rev. B 42 3690 (1990). https://doi.org/10.1103/PhysRevB.42.3690
  19. M. Wagner, U. Merkt and A. V. Chaplik, Phys. Rev. B 45, 1951 (1992).
  20. J. Tulkki and A. Henamaki, Phys. Rev. B 52, 8239 (1995). https://doi.org/10.1103/PhysRevB.52.8239
  21. B. Gulveren, Solid State Sci. 14, 94 (2012). https://doi.org/10.1016/j.solidstatesciences.2011.11.001
  22. D. G. Austing, S. Sasaki, S. Tarucha, S. M. Reimann, M. Koskinen and M. Manninen, Physica B 272, 68 (1999). https://doi.org/10.1016/S0921-4526(99)00347-6
  23. A. Wojs, P. Hawrylak, S. Fafarad and L. Jacak, Phys. Rev. B 54, 5604 (1996). https://doi.org/10.1103/PhysRevB.54.5604
  24. D. Heitmann, K. K. Bollweg, V. Gudmundsson, T. Kurth and S. P. Riege, Physica E 1, 204 (1997). https://doi.org/10.1016/S1386-9477(97)00044-1
  25. B. T. Miller, W. Hansen, S. Manus, R. J. Luyken, A. Lorke, J. P. Kotthaus, S. Huant, G. Mediros-Ribeiro and P. M. Petroff, Phys. Rev. B 56, 6764 (1997). https://doi.org/10.1103/PhysRevB.56.6764
  26. J. Adamowski, M. Sobkovize, B. Szafran and S. Bednarek, Phys. Rev. B 62, 4234 (2000). https://doi.org/10.1103/PhysRevB.62.4234
  27. X. Wen-Fang, Chinese Phys. Lett. 22, 1768 (2005). https://doi.org/10.1088/0256-307X/22/7/057
  28. M. A. Semina, A. A. Golovatenko and A. V. Rodina, Phys. Rev. B 93, 045409 (2016). https://doi.org/10.1103/PhysRevB.93.045409
  29. A. Gharaati and R. Khordad, Superlattice and Microst. 48, 276 (2010). https://doi.org/10.1016/j.spmi.2010.06.014
  30. L. Lu, W. Xie and H. Hassanabadi, Physica B 406, 4129 (2011). https://doi.org/10.1016/j.physb.2011.07.063
  31. R. Pino, A. Markvoort and P. A. J. Hilberts, Physica B 325, 149 (2011).
  32. R. Pino, A. Markvoort and P. A. J. Hilberts, Eur. Phys. J. B 23, 103 (2001). https://doi.org/10.1007/s100510170087
  33. A. Sergeev, R. Jovanovic, S. Kais and F. H Alharbi, J. Phys. A: Math. Theor. 49, 285202 (2016). https://doi.org/10.1088/1751-8113/49/28/285202
  34. E. H. Lieb, Rev. Mod. Phys. 53, 603 (1981). https://doi.org/10.1103/RevModPhys.53.603
  35. E. Cappelluti and L. D. Site, Physica A 303, 481 (2002). https://doi.org/10.1016/S0378-4371(01)00492-7
  36. I. Porras, J. Math. Chem. 46, 795 (2009). https://doi.org/10.1007/s10910-009-9554-0
  37. D. Ninno, F. Trani, G. Cantele, K. J. Hameeuw, G. Iadonisi, E. Degoli and S. Ossicini, Europhys. Lett. 74, 519 (2006). https://doi.org/10.1209/epl/i2005-10544-9
  38. R. Pino, Phys. Rev. B 58, 4644 (1998). https://doi.org/10.1103/PhysRevB.58.4644
  39. E. H. Lieb, J. P. Solovej and J. Yngvason, Phys. Rev. B 51, 646 (2000).
  40. S. Sinha, R. Shankar and M. V. Murthy, Phys. Rev. B 62, 896 (2000).
  41. S. Sinha, Physica E 8, 24 (2000). https://doi.org/10.1016/S1386-9477(00)00112-0
  42. A. Puente, M. Casas and L. Serra, Physica E 8, 387 (2000). https://doi.org/10.1016/S1386-9477(99)00042-9
  43. S. J. Puglia, A. Bhattacharrya and R. J. Furnstahl, Nucl. Phys. A 723, 145 (2003). https://doi.org/10.1016/S0375-9474(03)01161-8
  44. P. Vignolo and A. Minguzzi and M. P. Tosi, Phys. Rev. Lett. 85, 2850 (2000). https://doi.org/10.1103/PhysRevLett.85.2850
  45. G. M. Bruun and K. Burnett, Phys. Rev. A 58, 2427 (1998). https://doi.org/10.1103/PhysRevA.58.2427
  46. R. K. Bhaduri, M. V. N. Murthy and M. K. Srivastava, Phys. Rev. Lett. 76, 165 (1996). https://doi.org/10.1103/PhysRevLett.76.165
  47. H. Yoshimoto and S. Kurihara, J. Phys. A 36, 10461 (2003). https://doi.org/10.1088/0305-4470/36/42/004
  48. S. Alfarisa, W. S. B. Dwandaru and D. Darmawan, Makara J. Sci. 20, 28 (2016).
  49. M. Ogren and H. Heiselberg, Phys. Rev. A 76, 021601(R) (2007). https://doi.org/10.1103/PhysRevA.76.021601
  50. G. Su, J. Chen and L. Chen, Phys. Lett. A 315, 109 (2003). https://doi.org/10.1016/S0375-9601(03)01003-X
  51. B. Gulveren, Int. J. Mod. Phys. B 26, 1250152 (2012). https://doi.org/10.1142/S0217979212501524
  52. B. Gulveren, Int. J. Mod. Phys. B 26, 1250029-1 (2012). https://doi.org/10.1142/S021797921110206X
  53. J. S. Blakemore, Solid-State Electron 25, 1067 (1982). https://doi.org/10.1016/0038-1101(82)90143-5
  54. R. K. Pathria, Statistical Mechanics (Pergamon, New York, 1977).