DOI QR코드

DOI QR Code

Sulfur Poisoning of Ni Anode as a Function of Operating Conditions in Solid Oxide Fuel Cells

고체산화물 연료전지의 운전 조건에 따른 니켈 전극 황 피독 현상

  • Lee, Ho Seong (School of Materials Science and Engineering, Changwon National University) ;
  • Lee, Hyun Mi (School of Materials Science and Engineering, Changwon National University) ;
  • Lim, Hyung-Tae (School of Materials Science and Engineering, Changwon National University)
  • 이호성 (창원대학교신소재공학부) ;
  • 이현미 (창원대학교신소재공학부) ;
  • 임형태 (창원대학교신소재공학부)
  • Received : 2018.09.11
  • Accepted : 2018.10.16
  • Published : 2018.12.05

Abstract

In the present study, we investigated the sulfur poisoning of the Ni anode in solid oxide fuel cells (SOFCs) as a function of operating conditions. Anode supported cells were fabricated, and sulfur poising tests were conducted as a function of current density, $H_2S$ concentration and humidity in the anode gas. The voltage drop was significant under the higher current density (${\sim}714mA/cm^2$) condition, while it was much reduced under the lower current density (${\sim}389mA/cm^2$) condition, at 100 ppm of $H_2S$. A secondary voltage drop, which occurred only at the high current density, was attributed to Ni oxidation in the anode. Thus, operation at high current density with high $H_2S$ concentration may lead to permanent deterioration in the anode. The effect of water content (10%) on the sulfur poisoning was also investigated through a constant current test (${\sim}500mA/cm^2$) at 10 ppm of $H_2S$. The cell operating with 10% wet anode gas showed a much smaller initial voltage drop, in comparison with a dry anode gas. The present study indicates that operating conditions, such as gas humidity and current density, should be carefully taken into account, especially when fuel cells are operated with $H_2S$ containing fuel.

Keywords

Acknowledgement

Supported by : 창원대학교

References

  1. S. C. Singhal and K. Kendall, High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications, Elsevier (2003).
  2. S. Y. Bae, M. Y. Park, J. G. Lee, and H.-T. Lim, Korean J. Met. Mater. 55, 335 (2017). https://doi.org/10.3365/KJMM.2017.55.5.335
  3. Y. Lin, Z. Zhan, J. Liu, and S. A. Barnett, Solid State Ionics 176, 1827 (2005). https://doi.org/10.1016/j.ssi.2005.05.008
  4. C. M. Grgicak, M. M. Pakulska, J. S. O'Brien, and J. B. Giorgi, J. Power Sources 183, 26 (2008). https://doi.org/10.1016/j.jpowsour.2008.05.002
  5. J. W. Jang, Y.-J. Lee, J.-H. Kim, D.-W. Jeon, J.-H. Lee, H.-J. Lee, H.-J. Hwang, and M.-J. Lee, Met. Mater. Int. 23, 1227 (2017). https://doi.org/10.1007/s12540-017-6401-x
  6. A. Hagen, J. F. Rasmussen, and K. Thydn, J. Power Sources 196, 7271 (2011). https://doi.org/10.1016/j.jpowsour.2011.02.053
  7. K. Haga, S. Adachi, Y. Shiratori, K. Itoh, and K. Sasaki, Solid State Ionics 179, 1427 (2008). https://doi.org/10.1016/j.ssi.2008.02.062
  8. Z. Cheng, J. Wang, Y. Choi, L. Yang, M. Lin, and M. Liu, Energ. Environ. Sci. 4, 4380, (2011). https://doi.org/10.1039/c1ee01758f
  9. M. Riegraf, A. Zekri, M. Knipper, R. Costa, G. Schiller, and K. A. Friedrich, J. Power Sources 380, 26 (2018). https://doi.org/10.1016/j.jpowsour.2018.01.067
  10. M. Riegraf, R. Costa, G. Schiller, and K. A. Friedrich, ECS Transactions 78, 1285 (2017). https://doi.org/10.1149/07801.1285ecst
  11. H. Madi, S. Diethelm, C. Ludwig, and J. Van Herle, Int. J. Hydrogen Energy 41, 12231 (2016). https://doi.org/10.1016/j.ijhydene.2016.06.014
  12. B. Niu, F. Jin, X. Yang, T. Feng, and T. He, Int. J. Hydrogen Energy 43, 3280 (2018). https://doi.org/10.1016/j.ijhydene.2017.12.134
  13. Y. Zhang, J. Shao, Y. Tao, and S. Wang, J. Alloy. Compd. 737, 477 (2018). https://doi.org/10.1016/j.jallcom.2017.11.381
  14. J. F. Rasmussen and A. Hagen, J. Power Sources 191, 534 (2009). https://doi.org/10.1016/j.jpowsour.2009.02.001
  15. T. Yoshizumi, S. Taniguchi, Y. Shiratori, and K. Sasaki, J. Electrochem. Soc. 159, F693 (2012). https://doi.org/10.1149/2.032211jes
  16. A. Lussier, S. Sofie, J. Dvorak, and Y. Idzerda, Int. J. Hydrogen Energy 33, 3945 (2008). https://doi.org/10.1016/j.ijhydene.2007.11.033
  17. Z. Cheng, Investigations into the interactions between sulfur and anodes for solid oxide fuel cells, Ph.D. Thesis, Georgia Tech, Atlanta (2008).
  18. D. Waldbillig, D. G. Ivey, and A. Wood, Fuel Cell and Hydrogen Technologies -Proceedings of the International Symposium on Fuel Celland Hydrogen Technologies, 1st, p.237, Canadian Institute of Mining, Metallurgyand Petroleum, Montreal, Canada (2005).
  19. A. Ishikura, S. Sakuno, N. Komiyama, H. Sasatsu, N. Masuyama, H. Itoh, and K. Yasumoto, ECS Transactions 7, 845 (2007).
  20. L. Yang, Z. Cheng, M. Liu, and L. Wilson, Energ. Environ. Sci. 3, 1804 (2010). https://doi.org/10.1039/c0ee00386g
  21. Z. Cheng and M. Liu, Solid State Ionics 178, 925 (2007). https://doi.org/10.1016/j.ssi.2007.04.004
  22. D. Papurello, A. Lanzini, S. Fiorilli, F. Smeacetto, R. Singh, and M. Santarelli, Chem. Eng. J. 283, 1224 (2016). https://doi.org/10.1016/j.cej.2015.08.091
  23. A. Hauch, A. Hagen, J. Hjelm, and T. Ramos, J. Electrochem. Soc. 161, F734 (2014). https://doi.org/10.1149/2.080406jes
  24. M. S. Khan, S. Lee, R. Song, J. Lee, T. Lim, and S. Park, Ceram. Int. 42, 35 (2016). https://doi.org/10.1016/j.ceramint.2015.09.006
  25. E. Brightman, D. G. Ivey, D. J. L. Brett, and N. P. Brandon, J. Power Sources 196, 7182 (2011). https://doi.org/10.1016/j.jpowsour.2010.09.089
  26. H.-T. Lim, C. Yang, S. C. Hwang, and Y. J. Choi, Fuel Cells 15, 555 (2015). https://doi.org/10.1002/fuce.201400070
  27. H. T. Lim, S. C. Hwang, Y. M. Park, and I. S. Lee, Solid State Ionics 225, 124 (2012). https://doi.org/10.1016/j.ssi.2012.03.023
  28. J. B. Hansen, Electrochem. Solid St. 11, B178 (2008). https://doi.org/10.1149/1.2960521
  29. S. Mukerjee, K. Haltiner, R. Kerr, L. Chick, V. Sprenkle, K. Meinhardt, C. Lu, J. Y. Kim, and K. S. Weil, ECS Transactions 7, 59 (2007).