Acknowledgement
Supported by : National Natural Science Foundation of China (NSFC)
References
- N.Y. Du, H.B. Park, M.M. Dal-Cin, M.D. Guiver, Energy Environ. Sci. 5 (2012) 7306. https://doi.org/10.1039/C1EE02668B
- Y. Yampolskii, Macromolecules 45 (2012) 3298. https://doi.org/10.1021/ma300213b
- W.B. Richard, L. Kaaeid, Ind. Eng. Chem. Res. 47 (2008) 2109. https://doi.org/10.1021/ie071083w
- W. Richard, Baker, Ind. Eng. Chem. Res. 41 (2002) 1393. https://doi.org/10.1021/ie0108088
- D.F. Sanders, Z.P. Smith, R.L. Guo, L.M. Robeson, J.E. McGrath, D.R. Paul, B.D. Freeman, Polymer 54 (2013) 4729. https://doi.org/10.1016/j.polymer.2013.05.075
- J. Choi, H.K. Jeong, M.A. Snyder, J.A. Stoeger, R.I. Masel, M. Tsapatsis, Science 325 (2009) 589.
- X. Gao, X.Q. Zou, F. Zhang, S.X. Zhang, H.P. Ma, N. Zhao, G.S. Zhu, Chem. Commun. 49 (2013) 8839. https://doi.org/10.1039/c3cc44515a
- C.L. Kong, J.Q. Wang, J.H. Yang, J.M. Lu, A.F. Wang, Q.Y. Zhao, Carbon 45 (2007) 2843. https://doi.org/10.1016/j.carbon.2007.09.035
- D.F. Sanders, Z.P. Smith, R. Guo, L.M. Robeson, J.E. McGrath, D.R. Paul, B.D. Freeman, Polymer 54 (2013) 4729. https://doi.org/10.1016/j.polymer.2013.05.075
- Y. Yampolskii, Macromolecules 45 (2012) 3298. https://doi.org/10.1021/ma300213b
- F. Dorosti, M.R. Omidkhah, M.Z. Pedram, F. Moghadam, Chem. Eng. J.171 (2011) 1469. https://doi.org/10.1016/j.cej.2011.05.081
- D.M. Yu, Y.J. Yoon, T.H. Kim, J.Y. Lee, Y.T. Hong, Solid State Ion. 233 (2013) 55. https://doi.org/10.1016/j.ssi.2012.12.006
- F. Banihashemi, M. Pakizeh, A. Ahmadpour, Sep. Purif. Technol. 79 (2011) 293. https://doi.org/10.1016/j.seppur.2011.02.033
- S.Y. Zhou, X.Q. Zou, F.X. Sun, H. Ren, J. Liu, F. Zhang, N. Zhao, G.S. Zhu, Int. J. Hydrogen Energy 38 (2013) 5338. https://doi.org/10.1016/j.ijhydene.2013.02.074
- Y.X. Ma, F.L. Tian, Inn. Mong. Petrochem. Ind. 1 (2003) 15.
- L.M. Robeson, J. Membr. Sci. 320 (2008) 390. https://doi.org/10.1016/j.memsci.2008.04.030
- X. Zhu, C.C. Tian, S.M. Mahurin, S.H. Chai, C.M. Wang, S. Brown, G.M. Veith, H.M. Luo, H.L. Liu, S. Dai, J. Am. Chem. Soc. 134 (2012) 10478. https://doi.org/10.1021/ja304879c
- X. Zhu, S. Chai, C. Tian, P.F. Fulvio, K.S. Han, E.W. Hagaman, G.M. Veith, S.M. Mahurin, S. Brown, H. Liu, Macromol. Rapid Commun. 34 (2013) 452. https://doi.org/10.1002/marc.201200793
- A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.O. Muller, R. SchloglJ, M. Carlsson, J. Mater. Chem. 18 (2008) 4893. https://doi.org/10.1039/b800274f
- Z.Q. Luo, S.H. Lim, Z.Q. Tian, J.Z. Shang, L.F. Lai, B. MacDonald, C. Fu, Z. XShen, T. Yu, J.Y. Lin, J. Mater. Chem 21 (2011) 8038. https://doi.org/10.1039/c1jm10845j
- V.N. Khabashesku, J.L. Zimmerman, J.L. Margrave, Chem. Mater. 12 (2000) 3264. https://doi.org/10.1021/cm000328r
- J.P. Paraknowitsch, A. Thomasa, M. Antoniettib, J. Mater. Chem. 20 (2010) 6746. https://doi.org/10.1039/c0jm00869a
- M.G. Rabbani, H.M. El-Kaderi, Chem. Mater. 23 (2011) 1650. https://doi.org/10.1021/cm200411p
- Q.Q. Wang, N. Luo, X.D. Wang, Y.F. Ao, Y.F. Chen, J.M. Liu, C.Y. Su, D.X. Wang, M. X. Wang, J. Am. Chem. Soc. 139 (2017) 635. https://doi.org/10.1021/jacs.6b12386
- P.M. Budd, K.J. Msayib, C.E. Tattershall, B.S. Ghanem, K.J. Reynolds, N.B. McKeown, D. Fritsch, J. Membr. Sci. 251 (2005) 263. https://doi.org/10.1016/j.memsci.2005.01.009
- T. Mizumoto, T. Masuda, T. Higashimura, J. Polym. Sci. A Polym. Chem. 31 (1993) 2555. https://doi.org/10.1002/pola.1993.080311016
- W.H. Lin, T.S. Chung, J. Membr. Sci. 186 (2001) 183. https://doi.org/10.1016/S0376-7388(01)00333-7
- H. Lin, B.D. Freeman, J. Membr. Sci. 239 (2004) 105. https://doi.org/10.1016/j.memsci.2003.08.031
- T. Hu, G.X. Dong, H.Y. Li, V. Chen, J. Membr. Sci. 468 (2014) 107. https://doi.org/10.1016/j.memsci.2014.05.024
- G.J. Francisco, A. Chakma, X.S. Feng, J. Membr. Sci. 303 (2007) 54. https://doi.org/10.1016/j.memsci.2007.06.065
- H.C. Mao, S.B. Zhang, J. Mater. Chem. A 2 (2014) 9835. https://doi.org/10.1039/C4TA00429A
- V.A. Kusuma, G. Gunawan, Z.P. Smith, B.D. Freeman, Polymer 51 (2010) 5734. https://doi.org/10.1016/j.polymer.2010.09.069
- H.Q. Lin, E.V. Wagner, R. Raharjo, B.D. Freeman, I. Roman, Adv. Mater.18 (2006) 39. https://doi.org/10.1002/adma.200501409
- J. Zou, W.S.W. Ho, J. Membr. Sci. 286 (2006) 310. https://doi.org/10.1016/j.memsci.2006.10.013
- Y. Cai, Z. Wang, C.H. Yi, Y.H. Bai, J.X. Wang, S.C. Wang, J. Membr. Sci. 310 (2008) 184. https://doi.org/10.1016/j.memsci.2007.10.052
- L.Y. Deng, T.J. Kim, M.B. Hagg, J. Membr. Sci. 340 (2009) 154. https://doi.org/10.1016/j.memsci.2009.05.019
- S.J. Yuan, Z. Wang, Z.H. Qiao, M.M. Wang, J.X. Wang, S.C. Wang, J. Membr. Sci. 378 (2011) 425. https://doi.org/10.1016/j.memsci.2011.05.023
- X.N. Wu, B. Zhao, L. Wang, Z.H. Zhang, H.W. Zhang, X.H. Zhao, X.F. Guo, J. Membr. Sci. 520 (2016) 120. https://doi.org/10.1016/j.memsci.2016.07.025
- F. Ranjbaran, E. Kamio, H. Matsuyama, J. Membr. Sci. 544 (2017) 252. https://doi.org/10.1016/j.memsci.2017.09.036
- D.L. Wang, W.K. Teo, K. Li, J. Membr. Sci. 204 (2002) 247. https://doi.org/10.1016/S0376-7388(02)00047-9
Cited by
- Friedel-Crafts Synthesis of New Porous Aromatic Frameworks for Stabilizing Gas Transport Properties of Highly Permeable Glassy Polymers vol.92, pp.2, 2019, https://doi.org/10.1134/s1070427219020058
- Theoretical Investigation of the Topology of Spiroborate‐Linked Ionic Covalent Organic Frameworks (ICOFs) vol.25, pp.26, 2018, https://doi.org/10.1002/chem.201806400
- A novel biomimetic immunoassay method based on Pt nanozyme and molecularly imprinted polymer for the detection of histamine in foods vol.31, pp.1, 2018, https://doi.org/10.1080/09540105.2020.1807916
- An Ionic Liquid on a Porous Organic Framework Support: A Recyclable Catalyst for the Knoevenagel Condensation in an Aqueous System vol.85, pp.5, 2018, https://doi.org/10.1002/cplu.202000093
- Porous Aromatic Frameworks (PAFs) vol.120, pp.16, 2018, https://doi.org/10.1021/acs.chemrev.9b00687
- Preparation of a Cellulose Column for Enhancing the Sensing Efficiency of the Biocide 2-n-Octyl-4-Isothiazolin-3-One vol.12, pp.11, 2020, https://doi.org/10.3390/polym12112712
- In Situ-Doped Superacid in the Covalent Triazine Framework Membrane for Anhydrous Proton Conduction in a Wide Temperature Range from Subzero to Elevated Temperature vol.13, pp.11, 2018, https://doi.org/10.1021/acsami.1c01134
- Processes to enhance the sensitivity of sensor for 2‐n‐octyl‐4‐isothiazolin‐3‐one as biocide vol.67, pp.7, 2018, https://doi.org/10.1002/aic.17224