DOI QR코드

DOI QR Code

Fabrication of triazine-based Porous Aromatic Framework (PAF) membrane with structural flexibility for gas mixtures separation

  • Wang, Lei (Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University) ;
  • Jia, Jiangtao (State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University) ;
  • Faheem, Muhammad (Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University) ;
  • Tian, Yuyang (Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University) ;
  • Zhu, Guangshan (Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University)
  • Received : 2018.04.19
  • Accepted : 2018.07.07
  • Published : 2018.11.25

Abstract

A transparent, freestanding Porous Aromatic Framework-97 (PAF-97) membrane was successfully synthesized via a one-step acid-catalyzed reaction. Due to the introduction of ether groups, the obtained PAF-97 membrane possesses enhanced structural flexibility, thus increasing the flexibility of the resulting membrane. This is proofed by the fact that the feeding pressure of the membrane reaches as high as 5.5 bar during the separation of gas mixtures. The Young's moduli of the membrane were 6.615 GPa and 11.11 GPa, either in a dry or hydrated state respectively. To be highlighted, under a feeding pressure of 3.6 bar, the PAF-97 membrane rendered the permeance values of $2.90{\times}10^{-7}$, $1.29{\times}10^{-8}mol\;m^{-2}s^{-1}Pa^{-1}$ for $CO_2$ and $CH_4$, respectively, with a $CO_2/CH_4$ permselectivity of 22.48.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China (NSFC)

References

  1. N.Y. Du, H.B. Park, M.M. Dal-Cin, M.D. Guiver, Energy Environ. Sci. 5 (2012) 7306. https://doi.org/10.1039/C1EE02668B
  2. Y. Yampolskii, Macromolecules 45 (2012) 3298. https://doi.org/10.1021/ma300213b
  3. W.B. Richard, L. Kaaeid, Ind. Eng. Chem. Res. 47 (2008) 2109. https://doi.org/10.1021/ie071083w
  4. W. Richard, Baker, Ind. Eng. Chem. Res. 41 (2002) 1393. https://doi.org/10.1021/ie0108088
  5. D.F. Sanders, Z.P. Smith, R.L. Guo, L.M. Robeson, J.E. McGrath, D.R. Paul, B.D. Freeman, Polymer 54 (2013) 4729. https://doi.org/10.1016/j.polymer.2013.05.075
  6. J. Choi, H.K. Jeong, M.A. Snyder, J.A. Stoeger, R.I. Masel, M. Tsapatsis, Science 325 (2009) 589.
  7. X. Gao, X.Q. Zou, F. Zhang, S.X. Zhang, H.P. Ma, N. Zhao, G.S. Zhu, Chem. Commun. 49 (2013) 8839. https://doi.org/10.1039/c3cc44515a
  8. C.L. Kong, J.Q. Wang, J.H. Yang, J.M. Lu, A.F. Wang, Q.Y. Zhao, Carbon 45 (2007) 2843. https://doi.org/10.1016/j.carbon.2007.09.035
  9. D.F. Sanders, Z.P. Smith, R. Guo, L.M. Robeson, J.E. McGrath, D.R. Paul, B.D. Freeman, Polymer 54 (2013) 4729. https://doi.org/10.1016/j.polymer.2013.05.075
  10. Y. Yampolskii, Macromolecules 45 (2012) 3298. https://doi.org/10.1021/ma300213b
  11. F. Dorosti, M.R. Omidkhah, M.Z. Pedram, F. Moghadam, Chem. Eng. J.171 (2011) 1469. https://doi.org/10.1016/j.cej.2011.05.081
  12. D.M. Yu, Y.J. Yoon, T.H. Kim, J.Y. Lee, Y.T. Hong, Solid State Ion. 233 (2013) 55. https://doi.org/10.1016/j.ssi.2012.12.006
  13. F. Banihashemi, M. Pakizeh, A. Ahmadpour, Sep. Purif. Technol. 79 (2011) 293. https://doi.org/10.1016/j.seppur.2011.02.033
  14. S.Y. Zhou, X.Q. Zou, F.X. Sun, H. Ren, J. Liu, F. Zhang, N. Zhao, G.S. Zhu, Int. J. Hydrogen Energy 38 (2013) 5338. https://doi.org/10.1016/j.ijhydene.2013.02.074
  15. Y.X. Ma, F.L. Tian, Inn. Mong. Petrochem. Ind. 1 (2003) 15.
  16. L.M. Robeson, J. Membr. Sci. 320 (2008) 390. https://doi.org/10.1016/j.memsci.2008.04.030
  17. X. Zhu, C.C. Tian, S.M. Mahurin, S.H. Chai, C.M. Wang, S. Brown, G.M. Veith, H.M. Luo, H.L. Liu, S. Dai, J. Am. Chem. Soc. 134 (2012) 10478. https://doi.org/10.1021/ja304879c
  18. X. Zhu, S. Chai, C. Tian, P.F. Fulvio, K.S. Han, E.W. Hagaman, G.M. Veith, S.M. Mahurin, S. Brown, H. Liu, Macromol. Rapid Commun. 34 (2013) 452. https://doi.org/10.1002/marc.201200793
  19. A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.O. Muller, R. SchloglJ, M. Carlsson, J. Mater. Chem. 18 (2008) 4893. https://doi.org/10.1039/b800274f
  20. Z.Q. Luo, S.H. Lim, Z.Q. Tian, J.Z. Shang, L.F. Lai, B. MacDonald, C. Fu, Z. XShen, T. Yu, J.Y. Lin, J. Mater. Chem 21 (2011) 8038. https://doi.org/10.1039/c1jm10845j
  21. V.N. Khabashesku, J.L. Zimmerman, J.L. Margrave, Chem. Mater. 12 (2000) 3264. https://doi.org/10.1021/cm000328r
  22. J.P. Paraknowitsch, A. Thomasa, M. Antoniettib, J. Mater. Chem. 20 (2010) 6746. https://doi.org/10.1039/c0jm00869a
  23. M.G. Rabbani, H.M. El-Kaderi, Chem. Mater. 23 (2011) 1650. https://doi.org/10.1021/cm200411p
  24. Q.Q. Wang, N. Luo, X.D. Wang, Y.F. Ao, Y.F. Chen, J.M. Liu, C.Y. Su, D.X. Wang, M. X. Wang, J. Am. Chem. Soc. 139 (2017) 635. https://doi.org/10.1021/jacs.6b12386
  25. P.M. Budd, K.J. Msayib, C.E. Tattershall, B.S. Ghanem, K.J. Reynolds, N.B. McKeown, D. Fritsch, J. Membr. Sci. 251 (2005) 263. https://doi.org/10.1016/j.memsci.2005.01.009
  26. T. Mizumoto, T. Masuda, T. Higashimura, J. Polym. Sci. A Polym. Chem. 31 (1993) 2555. https://doi.org/10.1002/pola.1993.080311016
  27. W.H. Lin, T.S. Chung, J. Membr. Sci. 186 (2001) 183. https://doi.org/10.1016/S0376-7388(01)00333-7
  28. H. Lin, B.D. Freeman, J. Membr. Sci. 239 (2004) 105. https://doi.org/10.1016/j.memsci.2003.08.031
  29. T. Hu, G.X. Dong, H.Y. Li, V. Chen, J. Membr. Sci. 468 (2014) 107. https://doi.org/10.1016/j.memsci.2014.05.024
  30. G.J. Francisco, A. Chakma, X.S. Feng, J. Membr. Sci. 303 (2007) 54. https://doi.org/10.1016/j.memsci.2007.06.065
  31. H.C. Mao, S.B. Zhang, J. Mater. Chem. A 2 (2014) 9835. https://doi.org/10.1039/C4TA00429A
  32. V.A. Kusuma, G. Gunawan, Z.P. Smith, B.D. Freeman, Polymer 51 (2010) 5734. https://doi.org/10.1016/j.polymer.2010.09.069
  33. H.Q. Lin, E.V. Wagner, R. Raharjo, B.D. Freeman, I. Roman, Adv. Mater.18 (2006) 39. https://doi.org/10.1002/adma.200501409
  34. J. Zou, W.S.W. Ho, J. Membr. Sci. 286 (2006) 310. https://doi.org/10.1016/j.memsci.2006.10.013
  35. Y. Cai, Z. Wang, C.H. Yi, Y.H. Bai, J.X. Wang, S.C. Wang, J. Membr. Sci. 310 (2008) 184. https://doi.org/10.1016/j.memsci.2007.10.052
  36. L.Y. Deng, T.J. Kim, M.B. Hagg, J. Membr. Sci. 340 (2009) 154. https://doi.org/10.1016/j.memsci.2009.05.019
  37. S.J. Yuan, Z. Wang, Z.H. Qiao, M.M. Wang, J.X. Wang, S.C. Wang, J. Membr. Sci. 378 (2011) 425. https://doi.org/10.1016/j.memsci.2011.05.023
  38. X.N. Wu, B. Zhao, L. Wang, Z.H. Zhang, H.W. Zhang, X.H. Zhao, X.F. Guo, J. Membr. Sci. 520 (2016) 120. https://doi.org/10.1016/j.memsci.2016.07.025
  39. F. Ranjbaran, E. Kamio, H. Matsuyama, J. Membr. Sci. 544 (2017) 252. https://doi.org/10.1016/j.memsci.2017.09.036
  40. D.L. Wang, W.K. Teo, K. Li, J. Membr. Sci. 204 (2002) 247. https://doi.org/10.1016/S0376-7388(02)00047-9

Cited by

  1. Friedel-Crafts Synthesis of New Porous Aromatic Frameworks for Stabilizing Gas Transport Properties of Highly Permeable Glassy Polymers vol.92, pp.2, 2019, https://doi.org/10.1134/s1070427219020058
  2. Theoretical Investigation of the Topology of Spiroborate‐Linked Ionic Covalent Organic Frameworks (ICOFs) vol.25, pp.26, 2018, https://doi.org/10.1002/chem.201806400
  3. A novel biomimetic immunoassay method based on Pt nanozyme and molecularly imprinted polymer for the detection of histamine in foods vol.31, pp.1, 2018, https://doi.org/10.1080/09540105.2020.1807916
  4. An Ionic Liquid on a Porous Organic Framework Support: A Recyclable Catalyst for the Knoevenagel Condensation in an Aqueous System vol.85, pp.5, 2018, https://doi.org/10.1002/cplu.202000093
  5. Porous Aromatic Frameworks (PAFs) vol.120, pp.16, 2018, https://doi.org/10.1021/acs.chemrev.9b00687
  6. Preparation of a Cellulose Column for Enhancing the Sensing Efficiency of the Biocide 2-n-Octyl-4-Isothiazolin-3-One vol.12, pp.11, 2020, https://doi.org/10.3390/polym12112712
  7. In Situ-Doped Superacid in the Covalent Triazine Framework Membrane for Anhydrous Proton Conduction in a Wide Temperature Range from Subzero to Elevated Temperature vol.13, pp.11, 2018, https://doi.org/10.1021/acsami.1c01134
  8. Processes to enhance the sensitivity of sensor for 2‐n‐octyl‐4‐isothiazolin‐3‐one as biocide vol.67, pp.7, 2018, https://doi.org/10.1002/aic.17224