DOI QR코드

DOI QR Code

Enhancing the oxidative stabilization of isotropic pitch precursors prepared through the co-carbonization of ethylene bottom oil and polyvinyl chloride

  • Liu, Jinchang (Interdisciplinary Graduate School of Engineering Sciences, Kyushu University) ;
  • Shimanoe, Hiroki (Interdisciplinary Graduate School of Engineering Sciences, Kyushu University) ;
  • Nakabayashi, Koji (Interdisciplinary Graduate School of Engineering Sciences, Kyushu University) ;
  • Miyawaki, Jin (Interdisciplinary Graduate School of Engineering Sciences, Kyushu University) ;
  • Choi, Jong-Eun (Center for C-Industry Incubation, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Jeon, Young-Pyo (Center for C-Industry Incubation, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Yoon, Seong-Ho (Interdisciplinary Graduate School of Engineering Sciences, Kyushu University)
  • Received : 2018.06.04
  • Accepted : 2018.07.05
  • Published : 2018.11.25

Abstract

An isotropic pitch precursor for fabricating carbon fibres was prepared by co-carbonization of ethylene bottom oil(EBO) and polyvinyl chloride (PVC). Various pre-treatments of EBO and PVC, and a high heating rate of $3^{\circ}C/min$ with no holding time, were evaluated for their effects on the oxidative stabilization process and the mechanical stability of the resulting fibres. Our stabilization process enhanced the volatilization, oxidative reaction and decomposition properties of the precursor pitch, while the addition of PVC both decreased the onset time and accelerated the oxidative reaction. Aliphatic carbon groups played a critical role in stabilization. Microstructural characterization indicated that these were first oxidised to carbon-oxygen single bonds and then converted to carbon-oxygen double bonds. Due to the higher heating rate and lack of a holding step during processing,the resulting thermoplastic fibers did not completely convert to thermoset materials, allowing partially melted, adjacent fibres to fuse. Fiber surfaces were smooth and homogeneous. Of the various methods evaluated herein, carbon fibers derived from pressure-treated EBO and PVC exhibited the highest tensile strength. This work shows that enhancing the naphthenic component of a pitch precursor through the co-carbonization of pre-treated EBO with PVC improves the oxidative properties of the resulting carbon fibers.

Keywords

Acknowledgement

Grant : Development of petroleum-based high quality mesophase pitch and high yield mesophase pitch for premium carbon materials

Supported by : Ministry of Trade, Industry & Energy (MOTIE)

References

  1. K.S. Yang, B.-H. Kim, S.-H. Yoon, Carbon Lett. 15 (2014) 162. https://doi.org/10.5714/CL.2014.15.3.162
  2. B.-J. Kim, Y. Eom, O. Kato, J. Miyawaki, B.C. Kim, I. Mochida, S.-H. Yoon, Carbon 77 (2014) 747. https://doi.org/10.1016/j.carbon.2014.05.079
  3. B.-J. Kim, H. Kil, N. Watanabe, M.-H. Seo, B.-H. Kim, K.S. Yang, O. Kato, J. Miyawaki, I. Mochida, S.-H. Yoon, Curr. Org. Chem. 17 (2013) 1463. https://doi.org/10.2174/1385272811317130013
  4. E. Mora, C. Blanco, V. Prada, R. Santamaria, M. Granda, R. Menendez, Carbon 40 (2002) 2719. https://doi.org/10.1016/S0008-6223(02)00185-9
  5. S. Kubo, J.F. Kadla, J. Polym. Environ. 13 (2005) 97. https://doi.org/10.1007/s10924-005-2941-0
  6. J.G. Lavin, Carbon 30 (1992) 351. https://doi.org/10.1016/0008-6223(92)90030-Z
  7. S.-H. Yoon, Y. Korai, I. Mochida, Carbon 32 (1994) 281. https://doi.org/10.1016/0008-6223(94)90191-0
  8. T. Matsumoto, I. Mochida, Carbon 30 (1992) 1041. https://doi.org/10.1016/0008-6223(92)90134-I
  9. I. Norberg, Y. Nordstrom, R. Drougge, G. Gellerstedt, E. Sjoholm, J. Appl. Polym. Sci. 128 (2013) 3824. https://doi.org/10.1002/app.38588
  10. E. Frank, F. Hermanutz, M.R. Buchmeiser, Macromol. Mater. Eng. 297 (2012) 493. https://doi.org/10.1002/mame.201100406
  11. S.M. White, J.E. Spruiell, F.L. Paulauskas, Fundamental Studies of Stabilization of Polyacrylonitrile Precursor, Part 1: Effects of Thermal and Environmental Treatments, Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, United States, 2006.
  12. H. Shimanoe, S. Tanaka, K. Nakabayashi, J. Miyawaki, S.-H. Yoon, Carbon (2017) Melbourne, Australia.
  13. J. Drbohlav, W.T.K. Stevenson, Carbon 33 (1995) 693. https://doi.org/10.1016/0008-6223(95)00011-2
  14. J. Drbohlav, W.T.K. Stevenson, Carbon 33 (1995) 713. https://doi.org/10.1016/0008-6223(95)00012-3
  15. K. Miura, H. Nakagawa, K. Hashimoto, Carbon 33 (1995) 275. https://doi.org/10.1016/0008-6223(94)00133-K
  16. J.L. Braun, K.M. Holtman, J.F. Kadla, Carbon 43 (2005) 385. https://doi.org/10.1016/j.carbon.2004.09.027
  17. W.M. Qiao, S.-H. Yoon, Y. Korai, I. Mochida, S. Inoue, T. Sakurai, T. Shimohara, Carbon 24 (2004) 1327.
  18. I. Mochida, H. Toshima, Y. Korai, T. Matsumoto, J. Mater. Sci. 24 (1989) 2191. https://doi.org/10.1007/BF02385440
  19. I. Mochida, H. Toshima, Y. Korai, T. Hino, J. Mater. Sci. 24 (1989) 389. https://doi.org/10.1007/BF01107416
  20. J.X. Yang, K. Nakabayashi, J. Miyawaki, S.-H. Yoon, Carbon 106 (2016) 28. https://doi.org/10.1016/j.carbon.2016.05.019
  21. B.-J. Kim, T. Kotegawa, Y. Eom, J. An, I.-P. Hong, O. Kato, K. Nakabayashi, J. Miyawaki, B.C. Kim, I. Mochida, S.-H. Yoon, Carbon 99 (2016) 649. https://doi.org/10.1016/j.carbon.2015.12.082
  22. C. Diaz, C.G. Blanco, Energy Fuels 17 (2003) 907. https://doi.org/10.1021/ef020114r
  23. J.X. Yang, K. Nakabayashi, J. Miyawaki, S.-H. Yoon, J. Ind. Eng. Chem. 34 (2016) 397. https://doi.org/10.1016/j.jiec.2015.11.026
  24. M.J. Prauchner, V.M.D. Pasa, S.M.C. de Menezes, J. Wood Chem. Technol. 21 (2001) 371. https://doi.org/10.1081/WCT-100108332

Cited by

  1. Highly Chlorinated Polyvinyl Chloride as a Novel Precursor for Fibrous Carbon Material vol.12, pp.2, 2018, https://doi.org/10.3390/polym12020328
  2. Effects of Bromination-Dehydrobromination on the Microstructure of Isotropic Pitch Precursors for Carbon Fibers vol.12, pp.12, 2018, https://doi.org/10.3390/polym12123059