DOI QR코드

DOI QR Code

Nitrogen removal performance of anammox process with PVA-SA gel bead crosslinked with sodium sulfate as a biomass carrier

  • Tuyen, N.V. (Department of Environmental Engineering and Energy, Myongji University) ;
  • Ryu, J.H. (Department of Environmental Engineering and Energy, Myongji University) ;
  • Yae, J.B. (Bluebank Co., Ltd., Myongji University) ;
  • Kim, H.G. (Bluebank Co., Ltd., Myongji University) ;
  • Hong, S.W. (Department of Environmental Engineering and Energy, Myongji University) ;
  • Ahn, D.H. (Department of Environmental Engineering and Energy, Myongji University)
  • Received : 2018.02.01
  • Accepted : 2018.07.02
  • Published : 2018.11.25

Abstract

In this study,the result shows that polyvinyl alcohol-sodium alginate (PVA-SA) gel bead crosslinked with sodium sulfate are better among the different methods by comparing the relative mechanical strength, mechanical strength swelling and expansion coefficient of beads in water. Subsequently, anammox biomass entrapment by PVA-SA gel was introduced into continuous stirred tank reactor (CSTR). After 24 operation days, the nitrogen removal efficiency achieved 60%, while the nitrogen loading rate (NLR) was $0.14kgN/m^3/d$ and the experiment data indicated that PVA-SA gel bead crosslinked with sodium sulfate can be used to initiate anammox process. Furthermore, it is an alternative for culturing anammox in a long-term operation.

Keywords

Acknowledgement

Supported by : Korea Ministry of Environments

References

  1. A. Mulder, A.A. van de Graaf, L.A. Robertson, et al., FEMS Microbiol. Ecol. 16 (1995) 177. https://doi.org/10.1111/j.1574-6941.1995.tb00281.x
  2. H. Wu, G. Zeng, J. Liang, J. Chen, J. Xu, et al., Int. J. Appl. Earth Obs. Geoinf. 56 (2017) 36. https://doi.org/10.1016/j.jag.2016.11.006
  3. H. Wu, G. Zeng, J. Liang, et al., Ecol. Eng. 57 (2013) 72. https://doi.org/10.1016/j.ecoleng.2013.04.038
  4. H. Wu, G. Zeng, J. Liang, et al., Ecol. Indic. 53 (2015) 129. https://doi.org/10.1016/j.ecolind.2015.01.041
  5. N.A. Mohd Zain, M.S. Suhaimi, A. Idris, Process Biochem. 46 (2011) 2122. https://doi.org/10.1016/j.procbio.2011.08.010
  6. K.W. Jung, M.J. Hwang, T.U. Jeong, D.M. Chau, J. Ind. Eng. Chem. (2017) 1.
  7. G. Zeng, H. Wu, J. Liang, et al., RSC Adv. 5 (2015) 34541. https://doi.org/10.1039/C5RA04834F
  8. R. Surudzic, A. Jankovic, M. Mitric, I. Matic, Z.D. Juranic, L. Zivkovic, V. Miskovic-Stankovic, K.Y. Rhee, S.J. Park, D. Hui, J. Ind. Eng. Chem. (2015).
  9. M. Shafiq, A. Sabir, A. Islam, S.M.M. Khan, S.N. Hussain, M.T.Z.Z. Butt, T. Jamil, J. Ind. Eng. Chem. (2016) 1.
  10. P.V. Dinh, L.T. Bach, Int. J. Sci. Eng. 7 (2014) 41.
  11. M. Ali, M. Oshiki, L. Rathnayake, S. Ishii, H. Satoh, S. Okabe, Water Res. 79 (2015) 147. https://doi.org/10.1016/j.watres.2015.04.024
  12. T. Takei, K. Ikeda, H. Ijima, K. Kawakami, Process Biochem. 46 (2011) 566. https://doi.org/10.1016/j.procbio.2010.10.011
  13. G. Chen, J. Li, S. Tabassum, Z. Zhang, RSC Adv. 5 (2015) 25372. https://doi.org/10.1039/C4RA14451A
  14. L.M. Quan, D.P. Khanh, D. Hira, T. Fujii, K. Furukawa, Biodegradation 22 (2011) 1155. https://doi.org/10.1007/s10532-011-9471-3
  15. W. Bao-e, H. Yong-you, J. Environ. Sci. 19 (2007) 451. https://doi.org/10.1016/S1001-0742(07)60075-8
  16. G.P. Lim, M.S. Ahmad, J. Ind. Eng. Chem 56 (2017) 382. https://doi.org/10.1016/j.jiec.2017.07.035
  17. H. Wu, G. Zeng, J. Liang, et al., Appl. Microbiol. Biotechnol. 100 (2016) 8583. https://doi.org/10.1007/s00253-016-7614-5
  18. Kuo-Ying Amanda Wu, Keith D. Wisecarver, Biotechnol. Bioeng. (1992) 447.
  19. T. Takei, K. Ikeda, H. Ijima, M. Yoshida, K. Kawakami, Polym. Bull. 69 (2012) 363. https://doi.org/10.1007/s00289-012-0756-4
  20. Y.F. Lu, L.J. Ma, L. Ma, B. Shan, J.J. Chang, Environ. Technol. 39 (2017) 59.
  21. M. Strous, J.J. Heijnen, J.G. Kuenen, M.S.M. Jetten, Appl. Microbiol. Biotechnol. 50 (1998) 589. https://doi.org/10.1007/s002530051340
  22. S. Suneethi, S. Shalini, K. Joseph, Int. J. Waste Resour. 4 (2014).
  23. S. Uyanik, Ozan K. Bekmezci, A. Yurtsever, Clean - Soil Air Water 39 (2011) 653. https://doi.org/10.1002/clen.201000591
  24. H. Wu, C. Lai, G. Zeng, et al., Crit. Rev. Biotechnol. 37 (6) (2017) 754. https://doi.org/10.1080/07388551.2016.1232696
  25. H. Lopez, S. Puig, R. Ganigue, M. Ruscalleda, M.D. Balaguer, J. Colprim, J. Chem. Technol. Biotechnol. 83 (2008) 233. https://doi.org/10.1002/jctb.1796
  26. X. Ma, Y. Wang, S. Zhou, Y. Yan, X. Lin, M. Wu, Chem. Eng. J. 313 (2016) 1233.
  27. S.E. Vlaeminck, J. Geets, H. Vervaeren, N. Boon, Willy Verstraete, Environ. Biotechnol. 74 (2007) 1376. https://doi.org/10.1007/s00253-006-0770-2
  28. L.G.J.M.V. Dongen, M.S.M. Jetten, M.C.M.V The Combined Sharon/Anammox Process Loosdrecht, IWA Pulishing (2001).
  29. S. Jenni, S.E. Vlaeminck, E. Morgenroth, K.M. Udert, Water Res. 49 (2014) 316. https://doi.org/10.1016/j.watres.2013.10.073
  30. H. Bae, M. Choi, C. Lee, et al., Chem. Eng. J. 48 (2015) 667.
  31. A.N. Nozhevnikova, M.V. Simankova, Yu. V. Litti, Appl. Biochem. Microbiol. 5 (2011) 8.
  32. T.N. Viet, S.K. Behera, J.W. Kim, H.S. Park, Environ. Eng. Res. 13 (2008) 210. https://doi.org/10.4491/eer.2008.13.4.210
  33. D.W. Pak, J.Y. Jung, Y.C. Jung, Environ. Eng. Res. 1 (1996) 37.
  34. S. Bagchi, R. Biswas, T. Nandy, Microbiol. Biotechnol. 37 (2010) 943. https://doi.org/10.1007/s10295-010-0743-4

Cited by

  1. Accelerated start-up, long-term performance and microbial community shifts within a novel upflow porous-plated anaerobic reactor treating nitrogen-rich wastewater via ANAMMOX process vol.9, pp.45, 2018, https://doi.org/10.1039/c9ra04225c
  2. Mass transfer efficiency inside the polyvinyl alcohol‐sodium alginate carriers: kinetic changes of immobilized anammox bacteria vol.95, pp.12, 2018, https://doi.org/10.1002/jctb.6490
  3. Start-up of Anammox systems with different biochar amendment: Process characteristics and microbial community vol.790, pp.None, 2021, https://doi.org/10.1016/j.scitotenv.2021.148242
  4. Poly (vinyl alcohol)-alginate as potential matrix for various applications: A focused review vol.277, pp.None, 2018, https://doi.org/10.1016/j.carbpol.2021.118881
  5. Selection and synthesization of multi-carbon source composites to enhance simultaneous nitrification-denitrification in treating low C/N wastewater vol.288, pp.p2, 2022, https://doi.org/10.1016/j.chemosphere.2021.132567