DOI QR코드

DOI QR Code

Analysis of α + 40Ca and α + 58Ni Elastic Scatterings at Elab = 240 MeV

  • Kim, Yong Joo (Department of Physics and Research Institute for Basic Sciences, Jeju National University)
  • Received : 2018.09.11
  • Accepted : 2018.10.10
  • Published : 2018.12.31

Abstract

The elastic scatterings for the ${\alpha}+^{40}Ca$ and the ${\alpha}+^{58}Ni$ systems at $E_{lab}=240MeV$ have been analyzed within the framework of the Coulomb-modified Glauber model using two kinds of Gaussian density parameters for the target nuclei. The first one is to use Gaussian density parameters obtained from the root-mean-square radius. The second one is to use parameters calculated by matching the Gaussian density to the two-parameter Fermi density. The results with surface-matched Gaussian densities provide reasonable agreement with the experimental data, but the results without matching do not. The oscillatory structures observed in the angular distributions of both system can be interpreted as being due to the strong interference between the near-side and the far-side scattering amplitudes. The differences between the phase shifts obtained from the two methods are examined. We also investigate the effect of these differences on the differential and reaction cross sections, the transmission functions and the strong absorption radii.

Keywords

Acknowledgement

Supported by : Jeju National University

References

  1. J. Chauvin, D. Lebrun, A. Lounis and M. Buenerd, Phys. Rev. C 28, 1970 (1983). https://doi.org/10.1103/PhysRevC.28.1970
  2. A. Vitturi and F. Zardi, Phys. Rev. C 36, 1404 (1987). https://doi.org/10.1103/PhysRevC.36.1404
  3. S. M. Lenzi, A. Vitturi and F. Zardi, Phys. Rev. C 38, 2086 (1988). https://doi.org/10.1103/PhysRevC.38.2086
  4. M. H. Cha and Y. J. Kim, J. Phys. G : Nucl. Part. Phys. 18, L183 (1992). https://doi.org/10.1088/0954-3899/18/9/005
  5. Y. J. Kim and M. H. Cha, J. Korean Phys. Soc. 27, 444 (1994).
  6. S. K. Charagi, Phys. Rev. C 48, 452 (1993).
  7. P. J. Karol, Phys. Rev. C 11, 1203 (1975). https://doi.org/10.1103/PhysRevC.11.1203
  8. S. K. Charagi and S. K. Gupta, Phys. Rev. C 41, 1610 (1990). https://doi.org/10.1103/PhysRevC.41.1610
  9. M. H. Cha and Y. J. Kim, Sae Mulli 40, 183 (2000).
  10. I. Ahmad, M. A. Abdulmomen and M. A. Alvi, Int. J. Mod. Phys. E 11, 519 (2002). https://doi.org/10.1142/S0218301302001022
  11. I. Ahmad and M. A. Alvi, Int. J. Mod. Phys. E 13, 1225 (2004). https://doi.org/10.1142/S0218301304002685
  12. S. Ahmad, A. A. Usmani, S. Ahmad and Z. A. Khan, Phys. Rev. C 95,054601 (2017). https://doi.org/10.1103/PhysRevC.95.054601
  13. M. E. Farid and M. A. Hassanain, Nucl. Phys. A 678, 39 (2000). https://doi.org/10.1016/S0375-9474(00)00313-4
  14. M. M. H. El-Gogary, A. S. Shalaby, M. Y. Hassan and A. M. Hegazy, Phys. Rev. C 61, 044604 (2000). https://doi.org/10.1103/PhysRevC.61.044604
  15. C. Xiangzhou, F. Jun, S. Wenqing, M. Yugang and W. Jiansong et al., Phys. Rev. C 58, 572 (1998). https://doi.org/10.1103/PhysRevC.58.572
  16. H. L. Clark, Y. W. Lui and D. H. Youngblood, Nucl. Phys. A 589, 416 (1995). https://doi.org/10.1016/0375-9474(95)00121-G
  17. D. H. Youngblood, Y. W. Lui and H. L. Clark, Phys. Rev. C 55, 2811 (1997). https://doi.org/10.1103/PhysRevC.55.2811
  18. R. C. Fuller, Phys. Rev. C 12, 1561 (1975). https://doi.org/10.1103/PhysRevC.12.1561