DOI QR코드

DOI QR Code

Quantum Entanglement of Dark Matter

  • Lee, Jae-Weon (Department of Renewable Rnergy, Jungwon University)
  • Received : 2018.05.14
  • Accepted : 2018.07.06
  • Published : 2018.11.30

Abstract

We suggest that the dark matter in the universe has quantum entanglement if the dark matter is a Bose-Einstein condensation of ultra-light scalar particles. In this theory, any two regions of a galaxy are quantum entangled due to the quantum nature of the condensate. We calculate the entanglement entropy of a typical galactic halo, which turns out to be at least O(ln(M/m)), where M is the mass of the halo and m is the mass of a dark matter particle. The entanglement can be inferred from the rotation curves of the galaxy or the interference patterns of the dark matter density.

Keywords

Acknowledgement

Supported by : Jungwon University

References

  1. W. H. Press, B. S. Ryden and D. N. Spergel, Phys. Rev. Lett. 64, 1084 (1990). https://doi.org/10.1103/PhysRevLett.64.1084
  2. P. Salucci, F. Walter and A. Borriello, Astronomy and Astrophysics 409, 53 (2003). https://doi.org/10.1051/0004-6361:20030646
  3. J. F. Navarro, C. S. Frenk and S. D. M. White, Astrophys. J. 462, 563 (1996). https://doi.org/10.1086/177173
  4. W. J. G. de Blok, A. Bosma and S. S. McGaugh, astroph/ 0212102 (2002).
  5. A. Tasitsiomi, International Journal of Modern Physics D 12, 1157 (2003). https://doi.org/10.1142/S0218271803003426
  6. S-J. Sin, Phys. Rev. D50, 3650 (1994).
  7. J-W. Lee and I-G. Koh, Phys. Rev. D53, 2236 (1996). https://doi.org/10.1103/PhysRevD.53.2236
  8. W. Hu, R. Barkana and A. Gruzinov, Phys. Rev. Lett. 85, 1158 (2000). https://doi.org/10.1103/PhysRevLett.85.1158
  9. H-Y. Schive, T. Chiueh and T. Broadhurst, Nature Physics 10, 496 (2014). https://doi.org/10.1038/nphys2996
  10. H-Y. Schive et al., Phys. Rev. Lett. 113, 261302 (2014). https://doi.org/10.1103/PhysRevLett.113.261302
  11. J-W. Lee, J. Korean Phys. Soc. 54, 2622 (2009). https://doi.org/10.3938/jkps.54.2622
  12. A. Suarez, V. H. Robles and T. Matos, Astrophysics and Space Science Proceedings 38, 107 (2014).
  13. T. Rindler-Daller and P. R. Shapiro, Modern Physics Letters A 29, 30002 (2014).
  14. T. Harko, Phys. Rev. D 89, 084040 (2014). https://doi.org/10.1103/PhysRevD.89.084040
  15. P-H. Chavanis, Phys. Rev. D 84, 043531 (2011). https://doi.org/10.1103/PhysRevD.84.043531
  16. K. Huang, C. Xiong and X. Zhao, International Journal of Modern Physics A 29, 50074 (2014).
  17. M. R. Baldeschi, G. B. Gelmini and R. Ruffini, Physics Letters B 122, 221 (1983). https://doi.org/10.1016/0370-2693(83)90688-3
  18. M. Membrado, A. F. Pacheco and J. Sanudo, Phys. Rev. A 39, 4207 (1989). https://doi.org/10.1103/PhysRevA.39.4207
  19. L. M. Widrow and N. Kaiser, Astrophys. J. Lett. 416, L71 (1993). https://doi.org/10.1086/187073
  20. F. E. Schunck, astro-ph/9802258 (1998).
  21. U. Nucamendi, M. Salgado and D. Sudarsky, Phys. Rev. Lett. 84, 3037 (2000). https://doi.org/10.1103/PhysRevLett.84.3037
  22. A. Arbey, J. Lesgourgues and P. Salati, Phys. Rev. D 64, 123528 (2001). https://doi.org/10.1103/PhysRevD.64.123528
  23. A. Arbey, J. Lesgourgues and P. Salati, Phys. Rev. D 65, 083514 (2002). https://doi.org/10.1103/PhysRevD.65.083514
  24. J. Goodman, New Astronomy Reviews 5, 103 (2000). https://doi.org/10.1016/S1384-1076(00)00015-4
  25. P. Peebles, Astrophys. J. 534, L127 (2000). https://doi.org/10.1086/312677
  26. E. W. Mielke and F. E. Schunck, Phys. Rev. D 66, 023503 (2002). https://doi.org/10.1103/PhysRevD.66.023503
  27. V. Sahni and L. Wang, Phys. Rev. D 62, 103517 (2000). https://doi.org/10.1103/PhysRevD.62.103517
  28. M. Alcubierre et al., Class. Quant. Grav. 19, 5017 (2002). https://doi.org/10.1088/0264-9381/19/19/314
  29. C-G. Park, J-C. Hwang and H. Noh, Phys. Rev. D 86, 083535 (2012). https://doi.org/10.1103/PhysRevD.86.083535
  30. P. Sikivie and Q. Yang, Phys. Rev. Lett. 103, 111301 (2009). https://doi.org/10.1103/PhysRevLett.103.111301
  31. B. Fuchs and E. W. Mielke, Mon. Not. Roy. Astron. Soc. 350, 707 (2004). https://doi.org/10.1111/j.1365-2966.2004.07679.x
  32. T. Matos, F. S. Guzman, L. A. Urena-Lopez and D. Nunez, astro-ph/0102419 (2001).
  33. M. P. Silverman and R. L. Mallett, Classical and Quantum Gravity 18, L103 (2001). https://doi.org/10.1088/0264-9381/18/17/101
  34. U. Nucamendi, M. Salgado and D. Sudarsky, Phys. Rev. D 63, 125016 (2001). https://doi.org/10.1103/PhysRevD.63.125016
  35. A. A. Julien Lesgourgues and P. Salati, New Astronomy Reviews 46, 791 (2002). https://doi.org/10.1016/S1387-6473(02)00247-6
  36. C. G. Boehmer and T. Harko, JCAP 0706, 025 (2007).
  37. F. S. Guzman and T. Matos, Class. Quant. Grav. 17, L9 (2000). https://doi.org/10.1088/0264-9381/17/1/102
  38. J. P. Mbelek, Astron. Astrophys. 424, 761 (2004). https://doi.org/10.1051/0004-6361:20040192
  39. T. H. Lee and B. J. Lee, Phys. Rev. D 69, 127502 (2004). https://doi.org/10.1103/PhysRevD.69.127502
  40. F. S. Guzman and F. D. Lora-Clavijo, Gen. Rel. Grav. 47, 21 (2015). https://doi.org/10.1007/s10714-015-1865-9
  41. L. Hui, J. P. Ostriker, S. Tremaine and E. Witten, arXiv:1610.08297 (2016).
  42. J-W. Lee, Phys. Lett. B681, 118 (2009). https://doi.org/10.1016/j.physletb.2009.10.005
  43. J-W. Lee, Phys. Lett. B756, 166 (2016). https://doi.org/10.1016/j.physletb.2016.03.016
  44. H. L. Bray, arXiv1004.4016 (2010).
  45. F. S. Guzman, F. D. Lora-Clavijo, J. J. Gonzalez-Aviles and F. J. Rivera-Paleo, JCAP 1309, 034 (2013).
  46. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2001).
  47. J-W. Lee, J. Lee and H-C. Kim, JCAP 0708, 005 (2007).
  48. J-W. Lee, H-C. Kim and J. Lee, J. Korean Phys. Soc. 66, 1025 (2015). https://doi.org/10.3938/jkps.66.1025
  49. M. Van Raamsdonk, Gen. Rel. Grav. 42, 2323 (2010), [Int. J. Mod. Phys.D19,2429(2010)]. https://doi.org/10.1007/s10714-010-1034-0
  50. E. Martin-Martinez and N. C. Menicucci, Class. Quant. Grav. 29, 224003 (2012). https://doi.org/10.1088/0264-9381/29/22/224003
  51. Y. Nambu, Phys. Rev. D78, 044023 (2008). https://doi.org/10.1103/PhysRevD.78.044023
  52. C. Simon, Phys. Rev. A 66, 052323 (2002). https://doi.org/10.1103/PhysRevA.66.052323
  53. W. Ding and K. Yang, Phys. Rev. A 80, 012329 (2009). https://doi.org/10.1103/PhysRevA.80.012329
  54. G. Toth, C. Simon and J. I. Cirac, Phys. Rev. A 68, 062310 (2003). https://doi.org/10.1103/PhysRevA.68.062310
  55. A. X. Gonzalez-Morales, A. Diez-Tejedor, L. A. Urena-Lopez and O. Valenzuela, Phys. Rev. D87, 021301 (2013). https://doi.org/10.1103/PhysRevD.87.021301
  56. A. Khmelnitsky and V. Rubakov, JCAP 1402, 019 (2014).
  57. A. Aoki and J. Soda, Phys. Rev. D93, 083503 (2016).
  58. A. Aoki and J. Soda, arXiv:1608.05933 (2016).
  59. J. A. Gonzalez and F. S. Guzman, Phys. Rev. D83, 103513 (2011). https://doi.org/10.1103/PhysRevD.83.103513
  60. A. Imambekov, V. Gritsev and E. Demler, eprint arXiv:cond-mat/0703766 (2007).
  61. A. Paredes and H. Michinel, Phys. Dark Univ. 12, 50 (2016). https://doi.org/10.1016/j.dark.2016.02.003

Cited by

  1. Phases of the Bose-Einstein Condensate Dark Matter Model with Both Two- and Three-Particle Interactions vol.7, pp.10, 2021, https://doi.org/10.3390/universe7100359