DOI QR코드

DOI QR Code

In-situ XPS Study of Core-levels of ZnO Thin Films at the Interface with Graphene/Cu

  • Choi, Jinsung (Department of Electrical and Biological Physics, Kwangwoon University) ;
  • Jung, Ranju (Department of Electrical and Biological Physics, Kwangwoon University)
  • Received : 2018.08.28
  • Accepted : 2018.10.08
  • Published : 2018.11.30

Abstract

We have investigated core-levels of ZnO thin films at the interface with the graphene on Cu foil using in-situ X-ray Photoelectron Spectroscopy (XPS). Spectral evolution of C 1s, Zn 2p, and O 1s are observed in real time during RF sputtering deposition. We found binding energy (BE) shifts of Zn 2p and 'Zn-O' state of O 1s depending on ZnO film thickness. Core-levels BE shifts of ZnO will be discussed on the basis of electron transfer at the interface and it may have an important role in the electronic transport property of the ZnO/graphene-based electronic device.

Keywords

Acknowledgement

Supported by : Kwangwoon University

References

  1. Z. Li, R. Yang, M. Yu, F. Bai, C. Li and Z. L. Wang, J. Phys. Chem. C 112, 20114 (2008). https://doi.org/10.1021/jp808878p
  2. B. Li and H. Cao, J. Mater. Chem. 21, 3346 (20100). https://doi.org/10.1039/C0JM03253K
  3. Y. Y. Hui, G. Tai, Z. Sun, Z. Xu, N. Wang, F. Yan and S. P. Lau, Nanoscale 4, 3118 (2012). https://doi.org/10.1039/c2nr30249g
  4. J. O. Hwang, J. S. Park, D. S. Choi, J. Y. Kim, S. H. Lee, K. E. Lee, Y-H. Kim, M. H. Song, S. Yoo and S. O. Kim, ACS Nano 6, 159 (2012). https://doi.org/10.1021/nn203176u
  5. M. Law, L. E. Greene, J. C. Johnson, R. Saykally and P. Yang, Nat. Mater. 4, 42 (2005).
  6. K. Maeda, T. Takata, M. Hara, N. Saito, Y. Inoue, H. Kobayashi and K. Domen, J. Am. Chem. Soc. 127, 8286 (2005). https://doi.org/10.1021/ja0518777
  7. S-J. Chang, I-C. Chen and B-R. Huang, Nanotechnology 19, 175502 (2008). https://doi.org/10.1088/0957-4484/19/17/175502
  8. F. M. Simanjuntak, D. Panda, K-H.Wei and T-Y. Tseng, Nanoscale Research Letters 11, 368 (2016). https://doi.org/10.1186/s11671-016-1570-y
  9. J. O. Hwang, J. S. Park, D. S. Choi, J. Y. Kim, S. H. Lee, K. E. Lee, Y-H. Kim, M. H. Song, S. Yoo and S. O. Kim, ACS Nano 6, 159 (2012). https://doi.org/10.1021/nn203176u
  10. J. S. Park, J. M. Lee, S. K. Hwang, S. H. Lee, H-J. Lee, B. R. Lee, H. I. Park, J-S. Kim, S. Yoo, M. H. Song and S. O. Kim, J. Mater. Chem. 22, 12695 (2012). https://doi.org/10.1039/c2jm30710c
  11. A. Guermoune, T. Chari, F. Popescu, S. Sabri, J. Guillemette, H. Skulason, T. Szkopek and M. Siaj, Carbon 49, 4204 (2011). https://doi.org/10.1016/j.carbon.2011.05.054
  12. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Picsanec, D. Jiang, K. S. Novoselov, S. Roth and A. K. Geim, Phys. Rev. Lett. 97, 187401 (2006). https://doi.org/10.1103/PhysRevLett.97.187401
  13. D. Yoon, H. Moon, H. Cheong, J. S. Choi, J. A. Choi and B. H. Park, J. Korean Phys. Soc. 55, 1299 (2009). https://doi.org/10.3938/jkps.55.1299
  14. W. Geng, X. Zhao, H. Liu and X. Yao, J. Phys. Chem. C 117, 10536 (2013). https://doi.org/10.1021/jp401733h
  15. C-H. Min, S. Cho, S-H. Lee, D-Y. Cho, W. G. Park, J. G. Chung, E. Lee, J. C. Lee, B. Anass, J. H. Lee, C. S. Hwang and S-J. Oh, Appl. Phys. Lett. 96, 201907 (2010). https://doi.org/10.1063/1.3432398
  16. C. N. Peter, W. W. Anku, S. K. Shukla and P. P. Govender, Theoretical Chem. Accounts 137, 75 (2018). https://doi.org/10.1007/s00214-018-2258-4

Cited by

  1. Three-dimensional interconnected core-shell networks with Ni(Fe)OOH and M-N-C active species together as high-efficiency oxygen catalysts for rechargeable Zn-air batteries vol.7, pp.32, 2018, https://doi.org/10.1039/c9ta06852j
  2. Manipulating Interfacial Stability Via Absorption-Competition Mechanism for Long-Lifespan Zn Anode vol.14, pp.1, 2018, https://doi.org/10.1007/s40820-021-00777-2