DOI QR코드

DOI QR Code

Preparation of a Li7La3Zr1.5Nb0.5O12 Garnet Solid Electrolyte Ceramic by using Sol-gel Powder Synthesis and Hot Pressing and Its Characterization

  • Lee, Hee Chul (Department of Advanced Materials Engineering, Korea Polytechnic University) ;
  • Oh, Nu Ri (Department of Advanced Materials Engineering, Korea Polytechnic University) ;
  • Yoo, Ae Ri (Department of Advanced Materials Engineering, Korea Polytechnic University) ;
  • Kim, Yunsung (Department of Mechanical Engineering, University of Michigan) ;
  • Sakamoto, Jeff (Department of Mechanical Engineering, University of Michigan)
  • Received : 2018.05.29
  • Accepted : 2018.07.25
  • Published : 2018.11.30

Abstract

In this study, we prepared and characterized Nb-doped $Li_7La_3Zr_{2-x}O_{12}$ (LLZNO) powder and pellets with a cubic garnet structure by using a modified sol-gel synthesis and hot pressing. LLZNO powder with a very small grain size and cubic structure without secondary phases could be obtained by using a synthesis method in which Li and La sources in a propanol solvent were mixed together with Zr and Nb sources in 2-methoxy ethanol. A pure cubic phase LLZNO pellet could be fabricated from the prepared LLZNO and an additional 6-wt% of $Li_2CO_3$ powder by hot pressing at $1050^{\circ}C$ and 15.8 MPa. The hot-pressed LLZNO pellet with a relative density of 99% exhibited a very dense surface morphology. The total Li ionic conductivity of the hot-pressed LLZNO was $7.4{\times}10^{-4}S/cm$ at room temperature, which is very high level compared to other reported values. The activation energy for ionic conduction was estimated to be 0.40 eV.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. J. Wolfenstine, E. Rangasamy, J. L. Allen and J. Sakamoto, J. Power Sources 208, 193 (2012). https://doi.org/10.1016/j.jpowsour.2012.02.031
  2. H. Buschmann et al., Phys. Chem. Chem. Phys. 13, 19378 (2011). https://doi.org/10.1039/c1cp22108f
  3. K. B. Dermenci, E. Cekic and S. Turan, Int. J. Hydrogen Energy 41, 9860 (2016). https://doi.org/10.1016/j.ijhydene.2016.03.197
  4. Y. Zhang, J. Cai, F. Chen, R. Tu, Q. Shen, X. Zhang and L. Zhang, J. Alloy. Compd. 644, 793 (2015). https://doi.org/10.1016/j.jallcom.2015.05.085
  5. R. Murugan, V. Thangadurai and W. Weppner, Angew. Chem. Int. Ed. 46, 7778 (2007). https://doi.org/10.1002/anie.200701144
  6. M. Kotobuki, H. Munakata, K. Kanamura, Y. Sato and T. Yoshida, J. Electrochem. Soc. 157, A1076 (2010). https://doi.org/10.1149/1.3474232
  7. K. H. Kim, Y. Iriyama, K. Yamamoto, S. Kumazaki, T. Asaka, K. Tanabe, C. A. J. Fisher, T. Hirayama, R. Murugan and Z. Ogumi, J. Power Sources 196, 764 (2011). https://doi.org/10.1016/j.jpowsour.2010.07.073
  8. S. Ohta, T. Kobayashi and T. Asaoka, J. Power Sources 196, 3342 (2011). https://doi.org/10.1016/j.jpowsour.2010.11.089
  9. E. Rangasamy, J. Wolfenstine and J. Sakamoto, Solid State Ionics 206, 28 (2012). https://doi.org/10.1016/j.ssi.2011.10.022
  10. C. A. Geiger, E. Alekseev, B. Lazic, M. Fish, T. Armbruster, R. Langner, M. Fechtelkord, N. Kim, T. Pettke and W. Weppner, Inorg. Chem. 50, 1089 (2011). https://doi.org/10.1021/ic101914e
  11. I. N. David, T. Thompson, J. Wolfenstine, J. L. Allen and J. Sakamoto, J. Am. Ceram. Soc. 98, 1209 (2015). https://doi.org/10.1111/jace.13455
  12. Y. Kihira, S. Ohta, H. Imagawa and T. Asaoka, ECS Electrochem. Lett. 52, A56 (2013).
  13. T. Thompson, J. Wolfenstine, J. L. Allen, M. Johannes, A. Huq, I. N. David and J. Sakamoto, J. Mat. Chem. A 2, 13431 (2014). https://doi.org/10.1039/C4TA02099E
  14. D. Rettenwander, C. A. Geirger and G. Amthauer, Inorg. Chem. 52, 8005 (2013). https://doi.org/10.1021/ic400589u
  15. Y. Li, J. T. Han, C. A. Wang, H. Xie and J. B. Goodenough, J. Mater. Chem. 22, 15357 (2012). https://doi.org/10.1039/c2jm31413d
  16. J. Awaka, N. Kijima, K. Kataoka, H. Hayakawa and J. Akimoto, J. Solid State Chem. 183, 180 (2010). https://doi.org/10.1016/j.jssc.2009.10.030
  17. Y. Shimonishi, A. Toda, T. Zhang, A. Hirano, N. Imanishi, O. Yamamoto and Y. Takeda, Solid State Ionics 183, 48 (2011). https://doi.org/10.1016/j.ssi.2010.12.010
  18. I. Kokal, M. Somer, P. H. L. Notten and H. T. Hintzen, Solid State Ionics 185, 42 (2011). https://doi.org/10.1016/j.ssi.2011.01.002
  19. W. E. Tenhaeff, E. Rangasamy, Y. Wang, A. P. Sokolov, J. Wolfenstine, J. Sakamoto and N. J. Dudney, Chem. Electro. Chem. 1, 375 (2014).
  20. N. Janani, S. Ramakumar, S. Kannan and R. Murugan, J. Am. Ceram. Soc. 98, 2039 (2015). https://doi.org/10.1111/jace.13578
  21. Y. Zhang, F. Chen, R. Tu, Q. Shen and L. Zhang, J. Power Sources 268, 960 (2014). https://doi.org/10.1016/j.jpowsour.2014.03.148
  22. J. Sakamoto, E. Rangasamy, H. Kim, Y. Kim and J. Wolfenstine, Nanotechnology 24, 424005 (2013). https://doi.org/10.1088/0957-4484/24/42/424005

Cited by

  1. Effect of Ga-Bi Co-doped on Structural and Ionic Conductivity of Li7La3Zr2O12 Solid Electrolytes Derived from Sol-Gel Method vol.48, pp.12, 2018, https://doi.org/10.1007/s11664-019-07607-7
  2. Tri-Doping of Sol-Gel Synthesized Garnet-Type Oxide Solid-State Electrolyte vol.12, pp.2, 2018, https://doi.org/10.3390/mi12020134
  3. Effect of Sintering Process on Ionic Conductivity of Li7-xLa3Zr2-xNbxO12 (x = 0, 0.2, 0.4, 0.6) Solid Electrolytes vol.14, pp.7, 2018, https://doi.org/10.3390/ma14071671
  4. Molecular reconfigurations enabling active liquid-solid interfaces for ultrafast Li diffusion kinetics in the 3D framework of a garnet solid-state electrolyte vol.9, pp.31, 2021, https://doi.org/10.1039/d1ta03569j