DOI QR코드

DOI QR Code

Temperature Dependent Octahedral Tilting Behaviors of Monoclinic and Tetragonal SrRuO3 Thin Films

  • Lee, Sung Su (School of Materials Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Seo, Okkyun (Synchrotron X-ray Station at SPring-8, Research Network and Facility Services Division, National Institute for Materials Science (NIMS)) ;
  • Kim, Jaemyung (Synchrotron X-ray Station at SPring-8, Research Network and Facility Services Division, National Institute for Materials Science (NIMS)) ;
  • Song, Chulho (Synchrotron X-ray Station at SPring-8, Research Network and Facility Services Division, National Institute for Materials Science (NIMS)) ;
  • Hiroi, Satoshi (Synchrotron X-ray Station at SPring-8, Research Network and Facility Services Division, National Institute for Materials Science (NIMS)) ;
  • Chen, Yanna (Synchrotron X-ray Station at SPring-8, Research Network and Facility Services Division, National Institute for Materials Science (NIMS)) ;
  • Katsuya, Yoshio (Synchrotron X-ray Station at SPring-8, Research Network and Facility Services Division, National Institute for Materials Science (NIMS)) ;
  • Sakata, Osami (Synchrotron X-ray Station at SPring-8, Research Network and Facility Services Division, National Institute for Materials Science (NIMS))
  • Received : 2018.08.16
  • Accepted : 2018.08.28
  • Published : 2018.11.30

Abstract

We used in-situ synchrotron X-ray scattering to investigate phase transformations of octahedral tilted monoclinic $SrRuO_3$ (MSRO) and tetragonal SRO (TSRO) thin films on $SrTiO_3$ (STO) substrates. The octahedral tilted MSRO thin films were highly crystalline and the monoclinic distortion angle was $0.45^{\circ}$. The phase transition temperature from the MSRO to TSRO phase occurred at approximately $200^{\circ}C$ as a second order transition. Conversely, no phase transformations of the TSRO thin film occurred within the range from RT to $250^{\circ}C$. The octahedral $RuO_6$ rotation was strongly affected by the phase transformation in the SRO thin films.

Keywords

Acknowledgement

Supported by : Japan Synchrotron Radiation Institute

References

  1. C. B. Eom, R. J. Cava, R. M. Fleming, J. M. Phillips, R. B. Van Dover, J. H. Marshall, J. W. Hsu, J. J. Krajewski and W. F. Peck, Science 258, 1766 (1992). https://doi.org/10.1126/science.258.5089.1766
  2. M. Gao, H. Du, C. R. Ma, M. Liu, G. Collins, Y. M. Zhang, C. Dai, C. L. Chen and Y. Lin, Appl. Phys. Lett. 103, 141901 (2013). https://doi.org/10.1063/1.4823593
  3. J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig and R. Ramesh, Science 299, 1719 (2003). https://doi.org/10.1126/science.1080615
  4. V. Shelke, D. Mazumdar, G. Srinivasan and A. Gupta, J. Appl. Phys. 109, 07D914 (2011). https://doi.org/10.1063/1.3564940
  5. S. S. Lee, Y-M. Kim, H-J. Lee, O. Seo, H. Y. Jeong, Q. He, A. Y. Borisevich, B. Kang, O. Kwon, S. Kang, Y. Kim, T. Y. Koo, J-S. Rhyee, D. Y. Noh, B. Cho, J. H. Seo, J. H. Lee and J. Y. Jo, Adv. Funct. Mater. 28, 1800839 (2018). https://doi.org/10.1002/adfm.201800839
  6. A. P. Mackenzie, J. W. Reiner, A. W. Tyler, L. M. Galvin, S. R. Julian, M. R. Beasley, T. H. Geballe and A. Kapitulnik, Phys. Rev. B 58, R13318 (1998). https://doi.org/10.1103/PhysRevB.58.R13318
  7. Z. Fang, N. Nagaosa, K. S. Takahashi, A. Asamitsu, R. Mathieu, T. Ogasawara, H. Yamada, M. Kawasaki, Y. Tokura and K. Terakura, Science 302, 92 (2003). https://doi.org/10.1126/science.1089408
  8. D. Rubi, A. H. G. Vlooswijk and B. Noheda, Thin Solid Films 517, 1904 (2009). https://doi.org/10.1016/j.tsf.2008.09.106
  9. G. Herranz, F. Sanchez, J. Fontcuberta, M. V. Garcia-Cuenca, C. Ferrater, M. Varela, T. Angelova, A. Cros and A. Cantarero, Phys. Rev. B 71, 174411 (2005). https://doi.org/10.1103/PhysRevB.71.174411
  10. S. Woo, S. A Lee, H. Mun, Y. G. Choi, C. J. Zhung, S. Shin, M. Lacotte, A. David, W. Prellier, T. Park, W. N. Kang, J. S. Lee, S. W. Kim and W. S. Choi, Nanoscale 10, 4377 (2018). https://doi.org/10.1039/C7NR09627E
  11. S. A Lee, S. Oh, J-Y. Hwang, M. Choi, C. Youn, J. W. Kim, S. H. Chang, S. Woo, J-S. Bae, S. Park, Y-M. Kim, S. Lee, T. Choi, S. W. Kim and W. S. Choi, Energy Environ. Sci. 10, 924 (2017). https://doi.org/10.1039/C7EE00628D
  12. A. Herklotz, M. Kataja, K. Nenkov, M. D. Biegalski, H. M. Christen, C. Deneke, L. Schultz and K. Dorr, Phys. Rev. B 88, 144412 (2013). https://doi.org/10.1103/PhysRevB.88.144412
  13. W. Lu, W. Song, P. Yang, J. Ding, G. M. Chow and J. Chen, Sci. Rep. 5, 10245 (2015). https://doi.org/10.1038/srep10245
  14. W. Lu, W. D. Song, K. He, J. Chai, C-J. Sun, G-M. Chow and J-S. Chen, J. Appl. Phys. 113, 063901 (2013). https://doi.org/10.1063/1.4790699
  15. S. A Lee, S. Oh, J. Lee, J-Y. Hwang, J. Kim, S. Park, J-S. Bae, T. E. Hong, S. Lee, S. W. Kim, W. N. Kang and W. S. Choi, Sci. Rep. 7, 11583 (2017). https://doi.org/10.1038/s41598-017-11856-z
  16. D. Kan and Y. Shimakawa, Cryst. GrowthDes. 11, 5483 (2011). https://doi.org/10.1021/cg201070n
  17. K. J. Choi, S. H. Baek, H. W. Jang, L. J. Belenky, M. Lyubchenko and C. B. Eom, Adv. Mater. 22, 759 (2010). https://doi.org/10.1002/adma.200902355
  18. Q. Gan, R. A. Rao, C. B. Eom, J. L. Garrett and M. Lee, Appl. Phys. Lett. 72, 978 (1998). https://doi.org/10.1063/1.120603
  19. D. Kan, R. Aso, H. Kurata and Y. Shimakawa, J. Appl. Phys. 113, 173912 (2013). https://doi.org/10.1063/1.4803869
  20. A. M. Glazer, Acta. Cryst. B 28, 3384(1972). https://doi.org/10.1107/S0567740872007976
  21. A. M. Glazer, Acta. Cryst. A 31, 756(1975). https://doi.org/10.1107/S0567739475001635
  22. W. Lu, P. Yang, W. D. Song, G-M. Chow and J-S. Chen, Phys. Rev. B 88, 214115 (2013). https://doi.org/10.1103/PhysRevB.88.214115
  23. B. J. Kennedy, B. A. Hunter and J. R. Hester, Phys. Rev. B 65, 224103 (2005).
  24. K. Saito, A. Ulyanenkov, V. Grossmann, H. Ress, L. Bruegemann, H. Ohta, T. Kurosawa, S. Ueki and H. Funakubo, Jpn. J. Appl. Phys. 45, 7311 (2006). https://doi.org/10.1143/JJAP.45.7311
  25. N. M. Olekhnovich, T. E. Zhabko, N. S. Orlova, V. D. Janovich, O. I. Pashkovskii and T. L. Zykova, Cryst. Res. Technol. 26, 747 (1991). https://doi.org/10.1002/crat.2170260614

Cited by

  1. Correlation between structural phase transition and surface chemical properties of thin film SrRuO3/SrTiO3 (001) vol.152, pp.3, 2018, https://doi.org/10.1063/1.5134653