DOI QR코드

DOI QR Code

Polymerization of aniline using a peroxidase-mimetic catalyst

  • Kim, Min-Chul (Department of Chemical and Biomolecular Engineering) ;
  • Lim, Youngjoon (Department of Chemical and Biomolecular Engineering) ;
  • Lee, Sang-Yup (Department of Chemical and Biomolecular Engineering)
  • Received : 2018.07.02
  • Accepted : 2018.08.20
  • Published : 2018.12.25

Abstract

Enzyme polymerization is a benign process exploiting the unique activity of enzymes. In this study, a peroxidase-mimetic catalyst is demonstrated as an alternative to horseradish peroxidase (HRP) for the polymerization of aniline. The mimetic catalyst successfully catalyzes the polymerization of aniline monomers to produce polyaniline (PANI) in an aqueous solution. The PANI produced is rich of para-structure that is generally observed when HRP is used as a catalyst. Compared to HRP, the peroxidase-mimetic catalyst shows a considerably higher catalytic activity at neutral and weak basic conditions (pH >6.5) and at temperatures over $45^{\circ}C$, at which HRP is denatured.

Keywords

Acknowledgement

Supported by : Korean Research Foundation, Korea Institute of Energy Technology Evaluation and Planning (KETEP)

References

  1. K.M. Molapo, P.M. Ndangili, R.F. Ajayi, G. Mbambisa, S.M. Mailu, N. Njomo, M. Masikini, P. Baker, E.I. Iwuoha, Int. J. Electrochem. Sci. 7 (2012) 11859.
  2. J.G. Masters, Y. Sun, A.G. MacDiarmid, A.J. Epstein, Synth. Met. 715 (1991) 41.
  3. C.O. Baker, X. Huang, W. Nelson, R.B. Kaner, Chem. Soc. Rev. 46 (2017) 1510. https://doi.org/10.1039/C6CS00555A
  4. W.W. Focke, G.E. Wnek, J. Electroanal. Chem. Interfacial Electrochem. 256 (1988) 343. https://doi.org/10.1016/0022-0728(88)87008-6
  5. E.M. Genies, P. Hany, C.J. Santier, J. Appl. Electrochem. 18 (1988) 285.
  6. E. Zanzola, C.R. Dennison, A. Battistel, P. Peljo, H. Vrubel, V. Amstutz, H.H. Girault, Electrochim. Acta 235 (2017) 664. https://doi.org/10.1016/j.electacta.2017.03.084
  7. B.P. Jelle, G. Hagen, J. Electrochem. Soc. 140 (1993) 3560. https://doi.org/10.1149/1.2221126
  8. I.Y. Sapurina, M.A. Shishov, in: E.D.A.D.S. Gomes (Ed.), Handbook of New Polymers for Special Applications, InTech, 2012, pp. 251.
  9. N. Chandrakanthi, M.A. Careem, Polym. Bull. 44 (2000) 101. https://doi.org/10.1007/s002890050579
  10. B. Zhao, K.G. Neoh, E.T. Kang, J. Appl. Polym. Sci. 86 (2002) 2099. https://doi.org/10.1002/app.11194
  11. E.I. Santiago, E.C. Pereira, L.O.S. Bulhoes, Synth. Met. 98 (1998) 87. https://doi.org/10.1016/S0379-6779(98)00149-0
  12. M. Lahav, C. Durkan, R. Gabai, E. Katz, I. Willner, M.E. Welland, Angew. Chem. Int. Ed. 40 (2001) 4095. https://doi.org/10.1002/1521-3773(20011105)40:21<4095::AID-ANIE4095>3.0.CO;2-9
  13. N.A. Kumar, J.B. Baek, Chem. Commun. 50 (2014) 6298. https://doi.org/10.1039/c4cc01049c
  14. S. Kumar, A. Sen, S. Kumar, S. Augustine, B.K. Yadav, S. Mishra, B.D. Malhotra, Appl. Phys. Lett. 108 (2016) 203702. https://doi.org/10.1063/1.4950961
  15. H. Higashimura, S. Kobayashi, in: E.D.J.I. Kroschwitz (Ed.), Handbook of Encyclopedia of Polymer Science and Technology, vol. 10, Wiley, New York, 2004, pp. 740.
  16. N.Y. Abu Thabit, J. Chem. Educ. 93 (2016) 1606. https://doi.org/10.1021/acs.jchemed.6b00060
  17. S. Palaniappan, Polym. Adv. Technol. 13 (2002) 54. https://doi.org/10.1002/pat.154
  18. K.Y. Lin, L.W. Hu, K.L. Chen, M.D. Siao, W.F. Ji, C.C. Yang, J.M. Yeh, K.C. Chiu, Eur. Polym. J. 88 (2017) 311. https://doi.org/10.1016/j.eurpolymj.2017.01.035
  19. J. Shan, L. Han, F. Bai, S. Cao, Polym. Adv. Technol. 14 (2003) 330. https://doi.org/10.1002/pat.316
  20. L.A. Samuelson, A. Anagnostopoulos, K.S. Alva, J. Kumar, S.K. Tripathy, Macromolecules 31 (1998) 4376. https://doi.org/10.1021/ma980258y
  21. A. Bilici, I.H. Gecibesler, Y. Cogal, I. Kaya, Ind. Eng. Chem. Res. 56 (2017) 9266. https://doi.org/10.1021/acs.iecr.7b00555
  22. I. Pasti, M. Milojevic-Rakic, K. Junker, D. Bajuk-Bogdanovic, P. Walde, G. Ciric-Marjanovic, Electrochim. Acta 258 (2017) 834. https://doi.org/10.1016/j.electacta.2017.11.133
  23. Q. Wang, K. Ma, Z. Yu, J. Ding, Q. Hu, Q. Liu, H. Sun, D. Wen, Q. Liu, J. kong, New J. Chem. 42 (2018) 13536. https://doi.org/10.1039/C8NJ02594K
  24. S. Kobayashi, H. Uyama, S. Kimura, Chem. Rev. 101 (2001) 3793. https://doi.org/10.1021/cr990121l
  25. M. Akita, D. Tsutsumi, M. Kobayashi, H. Kise, Biosci. Biotechnol. Biochem. 65 (2001) 1581. https://doi.org/10.1271/bbb.65.1581
  26. B. Chance, Science 104 (1949) 204.
  27. L. Mao, S. Luo, Q. Huang, J. Lu, Sci. Rep. 3 (2013) 3126. https://doi.org/10.1038/srep03126
  28. S. Roy, J.M. Fortier, R. Nagarajan, S. Tripathy, J. Kumar, L.A. Samuelson, F.F. Bruno, Biomacromolecules 3 (2002) 937. https://doi.org/10.1021/bm0255138
  29. E. Tierrablanca, J. Romero-Garcia, P. Roman, R. Cruz-Silva, Appl. Catal. A 381 (2010) 267. https://doi.org/10.1016/j.apcata.2010.04.021
  30. Q. Hu, L. Li, G. Sun, D. Li, J. Kong, W. Huang, X. Zhang, J. Mater. Chem. B 5 (2017) 5937. https://doi.org/10.1039/C7TB01064H
  31. M.-C. Kim, S.-Y. Lee, Nanoscale 7 (2015) 17063. https://doi.org/10.1039/C5NR04893A
  32. M.-C. Kim, S.-Y. Lee, Chem. Eur. J. 20 (2014) 17019. https://doi.org/10.1002/chem.201404765
  33. J.H. Jones, M.E. Wood, Synth. Commun. 16 (1986) 1515. https://doi.org/10.1080/00397918608056403
  34. W. Stober, A. Fink, J. Colloid Interface Sci. 26 (1968) 62. https://doi.org/10.1016/0021-9797(68)90272-5
  35. G.H. Bogush, M.A. Tracy, C.F. Zukoski, J. Noncryst. Solids 104 (1988) 95. https://doi.org/10.1016/0022-3093(88)90187-1
  36. K. Zheng, A.R. Boccaccini, Adv. Colloid Interface Sci. 249 (2017) 363. https://doi.org/10.1016/j.cis.2017.03.008
  37. C.H. Lim, Y.J. Yoo, Process Biochem. 36 (2000) 233. https://doi.org/10.1016/S0032-9592(00)00193-X
  38. H.H.S. Javadi, F. Zuo, K.R. Cromack, M. Angelopoulos, A.G. MacDiamid, A.J. Epstein, Synth. Met. 29 (1989) 409. https://doi.org/10.1016/0379-6779(89)90326-3
  39. W. Shen, H. Deng, Z. Gao, RSC Adv. 4 (2014) 53257. https://doi.org/10.1039/C4RA06667G
  40. A.G. MacDiarmid, J.-C. Chiang, A.F. Richter, A.J. Epstein, Synth. Met. 18 (1987) 285. https://doi.org/10.1016/0379-6779(87)90893-9
  41. C.O. Baker, X. Huang, W. Nelson, R.B. Kaner, Chem. Soc. Rev. 46 (2017) 1510. https://doi.org/10.1039/C6CS00555A
  42. S.-B. Yoon, E.-H. Yoon, K.-B. Kim, J. Power Source 196 (2011) 10791. https://doi.org/10.1016/j.jpowsour.2011.08.107
  43. Y. Lim, S.-Y. Lee, J. Electrochem. Soc. 163 (2016) H9. https://doi.org/10.1149/2.0251602jes
  44. Y. Lim, S.-Y. Lee, J. Electrochem. Soc. 162 (2015) G48. https://doi.org/10.1149/2.0751508jes
  45. Z. Jin, Y. Su, Y. Duan, Synth. Met. 122 (2001) 237. https://doi.org/10.1016/S0379-6779(00)00287-3
  46. W. Liu, J. Kumar, S. Tripathy, J. Senecal, L. Samuelson, J. Am. Chem. Soc. 121 (1999) 71. https://doi.org/10.1021/ja982270b
  47. Y. Shen, J. Sun, J. Wu, Q. Zhou, J. Appl. Polym. Sci. 96 (2005) 814. https://doi.org/10.1002/app.21574
  48. K. Mallick, M. Witcomb, M. Scurrel, A. Strydom, J. Phys. D: Appl. Phys. 42 (2009) 9.
  49. L.C. Mendes, A.P.S. Falco, M.S. Pinho, P.O. Marques, Mater. Res. 14 (2011) 466. https://doi.org/10.1590/S1516-14392011005000070
  50. P. Cruz-Silva, J. Romero-Garcia, J.L. Angulo-Sanchez, A. Ledezma-Perez, E. Arias-Marin, I. Moggio, E. Flores-Loyola, Eur. Polym. J. 41 (2005) 1129. https://doi.org/10.1016/j.eurpolymj.2004.11.012
  51. M. Akita, D. Tsutsumi, M. Kobayashi, H. Kise, Biosci. Biotechnol. Biochem. 65 (2001) 1581. https://doi.org/10.1271/bbb.65.1581
  52. A.J. Milton, A.P. Monkman, J. Phys. D: Appl. Phys. 26 (1993) 1468. https://doi.org/10.1088/0022-3727/26/9/020
  53. A. Srivastava, V. Singh, C. Dhand, M. Kaur, T. Singh, K. Witte, U.W. Scherer, Sensors 6 (2006) 262.
  54. F. Xu, G. Zheng, D. Wu, Y. Liang, Z. Li, R. Fu, Phys. Chem. Chem. Phys. 12 (2010) 3270. https://doi.org/10.1039/b917677b
  55. G. Louarn, M. Lapkowski, S. Quillard, A. Pron, J.P. Buisson, S. Lefrant, J. Phys. Chem. 100 (1996) 6998. https://doi.org/10.1021/jp953387e
  56. J. Tang, X. Jing, B. Wang, F. Wang, Synth. Met. 24 (1988) 231. https://doi.org/10.1016/0379-6779(88)90261-5
  57. C.H. Lim, Y.J. Yoo, Process Biochem. 36 (2000) 233. https://doi.org/10.1016/S0032-9592(00)00193-X
  58. B. Butoi, A. Groza, P. Dinca, A. Balan, V. Barna, Polymers 9 (2017) 732. https://doi.org/10.3390/polym9120732
  59. C. Yin, L. Gao, F. Zhou, G. Duan, Polymers 9 (2017) 544. https://doi.org/10.3390/polym9100544
  60. A.V. Caramyshev, E.G. Evtushenko, V.F. Ivanov, A.R. Barcelo', M.G. Roig, V.L. Shnyrov, R.B. van Huystee, I.N. Kurochkin, A. Kh. Vorobiev, I. Yu. Sakharov, Biomacromolecules 6 (2005) 1360. https://doi.org/10.1021/bm049370w
  61. J.A. Nicell, J.K. Bewtra, N. Biswas, C.C. St. Pierre, K.E. Taylor, Can. J. Civ. Eng. 20 (1993) 725. https://doi.org/10.1139/l93-097
  62. J.M. Kovacs, C.T. Mant, R.S. Hodges, Biopolymer 84 (2006) 283. https://doi.org/10.1002/bip.20417
  63. Y. Chao, D. Fu, J. Biol. Chem. 279 (2004) 17173. https://doi.org/10.1074/jbc.M400208200
  64. K.K. Khan, M.S. Mondal, L. Padhy, S. Mitra, Eur. J. Biochem. 257 (1998) 547. https://doi.org/10.1046/j.1432-1327.1998.2570547.x
  65. T.C. Bruice, M.F. Zipplies, W.A. Lee, Proc. Natl. Acad. Sci. U. S. A. 83 (1986) 4646. https://doi.org/10.1073/pnas.83.13.4646
  66. M.R. Nabid, Z. Zamiraei, R. Sedghi, N. Safari, React. Funct. Polym. 69 (2009) 319. https://doi.org/10.1016/j.reactfunctpolym.2009.02.003
  67. S. Wang, H. Fang, Y. Wen, M. Cai, W. Liu, S. He, X. Xu, RSC Adv. 5 (2015) 57286. https://doi.org/10.1039/C5RA08688D
  68. D.G. Pina, A.V. Shnyrova, F. Gavilanes, A. Rodriguez, F. Leal, M.G. Roig, I.Y. Sakharov, G.G. Zhadan, E. Villar, V.L. Shnyrov, FEBS J. 268 (2001) 120.
  69. C. Li, L. Zhou, C. Wang, X. Liu, K. Liao, RSC Adv. 5 (2015) 41994. https://doi.org/10.1039/C5RA05626H
  70. Y.J. Kim, H. Uyama, S. Kobayashi, Macromolecules 36 (2003) 5058. https://doi.org/10.1021/ma0342022
  71. Y.J. Kim, H. Uyama, S. Kobayashi, Polym. J. 36 (2004) 992. https://doi.org/10.1295/polymj.36.992

Cited by

  1. Self-Assembling Peptidic Bolaamphiphiles for Biomimetic Applications vol.7, pp.8, 2018, https://doi.org/10.1021/acsbiomaterials.1c00576