DOI QR코드

DOI QR Code

Catalytic effect of metal oxides on CO2 absorption in an aqueous potassium salt of lysine

  • Received : 2018.04.03
  • Accepted : 2018.08.12
  • Published : 2018.12.25

Abstract

We report the catalytic effects of metal oxides on the $CO_2$ absorption rate in an aqueous potassium salt of ${\text\tiny{L}}-lysine-HCl$ using the vapor liquid equilibrium method. The best $CO_2$ absorption rate obtained through testing metal oxides in a highly concentrated potassium salt of amino acids (2.0 M) was identified using CuO. The recyclability of the metal oxides was tested over three cycles. The catalyst CuO was found to enhance the absorption rate of $CO_2$ by 61%. A possible mechanism was proposed based on NMR spectroscopy studies. Further, the effect of change in liquid absorbent viscosity on $CO_2$ absorption is discussed.

Keywords

Acknowledgement

Supported by : Korea Institute of Energy Technology Evaluation and Planning (KETEP)

References

  1. A.S. Bhown, B.C. Freeman, Environ. Sci. Technol. 45 (2011) 8624. https://doi.org/10.1021/es104291d
  2. N. MacDowell, N. Florin, A. Buchard, J. Hallett, A. Galindo, G. Jackson, C.S. Adjiman, C.K. Williams, N. Shah, P. Fennell, Energy Environ. Sci. 3 (2010) 1645. https://doi.org/10.1039/c004106h
  3. W. Conway, X. Wang, D. Fernandes, R. Burns, G. Lawrance, G. Puxty, M. Maeder, Environ. Sci. Technol. 47 (2013) 1163. https://doi.org/10.1021/es3025885
  4. Z. Liang, W. Rongwong, H. Liu, K. Fu, H. Gao, F. Cao, R. Zhang, T. Sema, A. Henni, K. Sumon, D. Nath, D. Gelowitz, W. Srisang, C. Saiwan, A. Benamor, M. Al-Marri, H. Shi, T. Supap, C. Chan, Q. Zhou, M. Abu-Zahra, M. Wilson, W. Olson, R. Idem, P. Tontiwachwuthikul, Int. J. Greenhouse Gas Control 40 (2015) 26. https://doi.org/10.1016/j.ijggc.2015.06.017
  5. P. Freund, Proc. Inst. Mech. Eng. A 217 (2003) 1.
  6. A. Schreiber, P. Zapp, W. Kuckshinrichs, Int. J. Life Cycle Assess. 14 (2009) 547. https://doi.org/10.1007/s11367-009-0102-8
  7. D. Aaron, C. Tsouris, Sep. Sci. Technol. 40 (2005) 321. https://doi.org/10.1081/SS-200042244
  8. D. Sivanesan, Y. Choi, J. Lee, M.H. Youn, K.T. Park, A.N. Grace, H.-J. Kim, S.K. Jeong, ChemSusChem 8 (2015) 3977. https://doi.org/10.1002/cssc.201501139
  9. D. Sivanesan, Y.E. Kim, M.H. Youn, K.T. Park, A.N. Grace, H.-J. Kim, S.K. Jeong, RSC Adv. 6 (2016) 64575. https://doi.org/10.1039/C6RA13978G
  10. P. Sudakar, D. Sivanesan, S. Yoon, Macromol. Rapid Commun. 37 (2016) 788. https://doi.org/10.1002/marc.201500681
  11. D. Sivanesan, M.H. Youn, K.T. Park, H.J. Kim, S.K. Jeong, Cryst. Growth Des. 17 (2017) 4504. https://doi.org/10.1021/acs.cgd.7b00693
  12. C.A. Lippert, K. Liu, M. Sarma, S.R. Parkin, J.E. Remias, C.M. Brandewie, S.A. Odom, K. Liu, Catal. Sci. Technol. 4 (2014) 3620. https://doi.org/10.1039/C4CY00766B
  13. R.S. Haszeldine, Science 325 (2009) 1647. https://doi.org/10.1126/science.1172246
  14. W.C. Floyd III, S.E. Baker, C.A. Valdez, J.K. Stolaroff, J.P. Bearinger, J.H. Satcher Jr., R.D. Aines, Environ. Sci. Technol. 47 (2013) 10049. https://doi.org/10.1021/es401336f
  15. Y. Wang, L. Zhao, A. Otto, M. Robinius, D. Stolten, Energy Procedia 114 (2017) 650. https://doi.org/10.1016/j.egypro.2017.03.1209
  16. M. Zhao, A.I. Minett, A.T. Harris, Energy Environ. Sci. 6 (2013) 25. https://doi.org/10.1039/C2EE22890D
  17. P.D. Vaidya, E.Y. Kenig, Chem. Eng. Technol. 30 (2007) 1467. https://doi.org/10.1002/ceat.200700268
  18. Y. Choi, D. Sivanesan, J. Lee, M.H. Youn, K.T. Park, H.J. Kim, A.N. Grace, I.H. Kim, S.K. Jeong, J. Ind. Eng. Chem. 34 (2016) 76. https://doi.org/10.1016/j.jiec.2015.10.037
  19. D. Sivanesan, M.H. Youn, A. Murnandari, J.M. Kang, K.T. Park, H.J. Kim, S.K. Jeong, J. Ind. Eng. Chem. 52 (2017) 287. https://doi.org/10.1016/j.jiec.2017.03.058
  20. N.J.M.C. Penders-van Elk, P.W.J. Derks, S. Fradette, G.F. Versteeg, Int. J. Greenhouse Gas Control 9 (2012) 385. https://doi.org/10.1016/j.ijggc.2012.04.008
  21. D.P. Hagewiesche, S.S. Ashour, H.A. Al-Ghawas, O.C. Sandall, Chem. Eng. Sci 50 (1995) 1071. https://doi.org/10.1016/0009-2509(94)00489-E
  22. C.-H. Liao, M.-H. Li, Kinetics of absorption of carbon dioxide into aqueous solutions of monoethanolamine + N-methyldiethanolamine, Chem. Eng. Sci. 57 (2002) 4569. https://doi.org/10.1016/S0009-2509(02)00395-0
  23. N. Ramachandran, A. Aboudheir, R. Idem, P. Tontiwachwuthikul, Ind. Eng. Chem. Res. 45 (2006) 2608. https://doi.org/10.1021/ie0505716
  24. H.J. Song, S.W. Park, H. Kim, A. Gaur, J.W. Park, S.J. Lee, Int. J. Greenhouse Gas Control 11 (2012) 64. https://doi.org/10.1016/j.ijggc.2012.07.019
  25. P.S. Kumar, J.A. Hogendoorn, G.F. Versteeg, AIChE J. 49 (2003) 203. https://doi.org/10.1002/aic.690490118
  26. R.J. Hook, Ind. Eng. Chem. Res. 36 (1997) 1779. https://doi.org/10.1021/ie9605589
  27. P.S. Kumar, J.A. Hogendoorn, P.H.M. Feron, G.F. Versteeg, Chem. Eng. Sci. 57 (2002) 1639. https://doi.org/10.1016/S0009-2509(02)00041-6
  28. J.V. Holsta, G.F. Versteegb, D.W.F. Brilmana, J.A. Hogendoorn, Chem. Eng. Sci. 64 (2009) 59. https://doi.org/10.1016/j.ces.2008.09.015
  29. A.-H. Liu, R. Ma, C. Song, Z.Z. Yang, A. Yu, Y. Cai, L.-N. He, Y.N. Zhao, B. Yu, Q.W. Song, Angew. Chem. Int. Ed. 51 (2012) 11306. https://doi.org/10.1002/anie.201205362
  30. D. Guo, H. Thee, C.Y. Tan, J. Chen, W. Fei, S. Kentish, G.W. Stevens, G.D. Silva, Energy Fuels 27 (2013) 3898. https://doi.org/10.1021/ef400413r
  31. E. Sanchez-Fernandez, F.-D.M. Mercader, K. Misiak, L.V.D. Ham, M. Linders, E. Goetheer, Energy Procedia 37 (2013) 1160. https://doi.org/10.1016/j.egypro.2013.05.213
  32. D. Kang, S. Park, H. Jo, J. Min, J. Park, J. Chem. Eng. Data 58 (2013) 1787. https://doi.org/10.1021/je4001813
  33. S. Shen, Y.-N. Yang, Y. Wang, S. Ren, J. Han, A. Chen, Fluid Phase Equilib. 399 (2015) 40. https://doi.org/10.1016/j.fluid.2015.04.021
  34. S. Shen, Y.-N. Yang, Y. Bian, Y. Zhao, Environ. Sci. Technol. 50 (2016) 2054. https://doi.org/10.1021/acs.est.5b04515
  35. G. Hu, K.H. Smith, Y. Wu, S.E. Kentish, G.W. Stevens, Energy Fuels 31 (2017) 4280. https://doi.org/10.1021/acs.energyfuels.7b00157
  36. M.H. Haider, N.F. Dummer, D.W. Knight, R.L. Jenkins, M. Howard, J. Moulijn, S.H. Taylor, G.J. Hutchings, Nat. Chem. 7 (2015) 1028. https://doi.org/10.1038/nchem.2345
  37. A. Munoz-Paez, J. Chem. Educ. 71 (1994) 381. https://doi.org/10.1021/ed071p381
  38. A.R. West, Basic Solid State Chemistry, John Wiley & Sons, 1999 (Chapter II).
  39. I.E. Wachs, L.E. Briand, J.-M. Jehng, L. Burcham, X. Gao, Catal. Today 57 (2000) 323. https://doi.org/10.1016/S0920-5861(99)00343-0
  40. M.B. Gawande, R.K. Pandey, R.V. Jayaram, Catal. Sci. Technol. 2 (2012) 1113. https://doi.org/10.1039/c2cy00490a
  41. U.H. Bhatti, A.K. Shah, J.N. Kim, J.K. You, S.H. Choi, D.H. Lim, S. Nam, Y.H. Park, I. H. Baek, ACS Sustain. Chem. Eng. 5 (2017) 5862. https://doi.org/10.1021/acssuschemeng.7b00604
  42. S. Shen, Y. Yang, Y. Wang, S. Ren, J. Han, A. Chen, Fluid Phase Equilib. 399 (2015) 40. https://doi.org/10.1016/j.fluid.2015.04.021
  43. X. Zhang, X. Zhang, H. Liu, W. Li, M. Xiao, H. Gao, Z. Liang, Appl. Energy 202 (2017) 673. https://doi.org/10.1016/j.apenergy.2017.05.135
  44. X. Zhang, R. Zhang, H. Liu, H. Gao, Z. Liang, Appl. Energy 218 (2018) 417. https://doi.org/10.1016/j.apenergy.2018.02.087

Cited by

  1. 주류공정 내 L-alanine·염 스크러버를 이용한 고농도 이산화탄소 저감 효율 평가 vol.37, pp.2, 2018, https://doi.org/10.12925/jkocs.2020.37.2.214
  2. Catalytic Solvent Regeneration for Energy-Efficient CO2 Capture vol.8, pp.51, 2018, https://doi.org/10.1021/acssuschemeng.0c07066
  3. Investigation of the ultrasound assisted CO2 absorption using different absorbents vol.149, pp.None, 2018, https://doi.org/10.1016/j.psep.2020.10.054