Acknowledgement
Supported by : University of Tabriz, Azarbaijan Shahid Madani University
References
- K. Nakata, A. Fujishima, J. Photochem. Photobiol. C: Photochem. Rev. 13 (2012) 169. https://doi.org/10.1016/j.jphotochemrev.2012.06.001
- A. Fujishima, T.N. Rao, D.A. Tryk, J. Photochem. Photobiol. C: Photochem. Rev. 1 (2000) 1. https://doi.org/10.1016/S1389-5567(00)00002-2
- A. Fujishima, X. Zhang, D.A. Tryk, Surf. Sci. Rep. 63 (2008) 515. https://doi.org/10.1016/j.surfrep.2008.10.001
- I.A. Alaton, I.A. Balcioglu, D.W. Bahnemann, Water Res. 36 (2002) 1143. https://doi.org/10.1016/S0043-1354(01)00335-9
- A. Gupta, A. Pal, C. Sahoo, Dyes Pigm. 69 (2006) 224. https://doi.org/10.1016/j.dyepig.2005.04.001
- H. Tada, T. Kiyonaga, S.-i. Naya, Chem. Soc. Rev. 38 (2009) 1849. https://doi.org/10.1039/b822385h
- L. Huang, S. Chu, J. Wang, F. Kong, L. Luo, Y. Wang, Z. Zou, Catal. Today 212 (2013) 81. https://doi.org/10.1016/j.cattod.2012.08.026
- A. Di Paola, E. Garcia-Lopez, G. Marci, L. Palmisano, J. Hazard. Mater. 211 (2012) 3.
- X. Chen, S.S. Mao, Chem. Rev. 107 (2007) 2891. https://doi.org/10.1021/cr0500535
- H. Lachheb, E. Puzenat, A. Houas, M. Ksibi, E. Elaloui, C. Guillard, J.-M. Herrmann, Appl. Catal. B: Environ. 39 (2002) 75. https://doi.org/10.1016/S0926-3373(02)00078-4
- M. Zhou, J. Yu, S. Liu, P. Zhai, L. Jiang, J. Hazard. Mater. 154 (2008) 1141. https://doi.org/10.1016/j.jhazmat.2007.11.021
- Y.-K. Lai, J.-Y. Huang, H.-F. Zhang, V.-P. Subramaniam, Y.-X. Tang, D.-G. Gong, L. Sundar, L. Sun, Z. Chen, C.-J. Lin, J. Hazard. Mater. 184 (2010) 855. https://doi.org/10.1016/j.jhazmat.2010.08.121
- M. Balat, Int. J. Hydrogen Energy 33 (2008) 4013. https://doi.org/10.1016/j.ijhydene.2008.05.047
- L. Zhang, X. Li, Z. Chang, D. Li, Mater. Sci. Semicond. Process. 14 (2011) 52. https://doi.org/10.1016/j.mssp.2011.01.004
- D. Yang, S. Song, Y. Zou, X. Wang, S. Yu, T. Wen, H. Wang, T. Hayat, A. Alsaedi, X. Wang, Chem. Eng. J. 323 (2017) 143. https://doi.org/10.1016/j.cej.2017.03.158
- S. Kumar, M.A. Isaacs, R. Trofimovaite, L. Durndell, C.M. Parlett, R.E. Douthwaite, B. Coulson, M.C. Cockett, K. Wilson, A.F. Lee, Appl. Catal. B: Environ. 209 (2017) 394. https://doi.org/10.1016/j.apcatb.2017.03.006
- M. Wen, T. Xiong, Z. Zang, W. Wei, X. Tang, F. Dong, Opt. Express 24 (2016) 10205. https://doi.org/10.1364/OE.24.010205
- Y. Ye, Z. Zang, T. Zhou, F. Dong, S. Lu, X. Tang, W. Wei, Y. Zhang, J. Catal. 357 (2018) 100. https://doi.org/10.1016/j.jcat.2017.11.002
- H. Huang, J. Zhang, L. Jiang, Z. Zang, J. Alloys Compd. 718 (2017) 112. https://doi.org/10.1016/j.jallcom.2017.05.132
- L. Mohapatra, K. Parida, Sep. Purif. Technol. 91 (2012) 73. https://doi.org/10.1016/j.seppur.2011.10.028
- J.W. Boclair, P.S. Braterman, Chem. Mater. 11 (1999) 298. https://doi.org/10.1021/cm980523u
- A. Mantilla, G. Jacome-Acatitla, G. Morales-Mendoza, F. Tzompantzi, R. Gomez, Ind. Eng. Chem. Res. 50 (2010) 2762.
- C.G. Silva, Y. Bouizi, V. Fornes, H. Garci'a, J. Am. Chem. Soc. 131 (2009) 13833. https://doi.org/10.1021/ja905467v
- K. Parida, N. Baliarsingh, B.S. Patra, J. Das, J. Mol. Catal. A: Chem. 267 (2007) 202. https://doi.org/10.1016/j.molcata.2006.11.035
- Q. Wang, D. O'Hare, Chem. Rev. 112 (2012) 4124. https://doi.org/10.1021/cr200434v
- P.R. Chowdhury, K.G. Bhattacharyya, Dalton Trans. 44 (2015) 6809. https://doi.org/10.1039/C5DT00257E
- J. Wang, J. Li, Y. Xie, C. Li, G. Han, L. Zhang, R. Xu, X. Zhang, J. Environ. Manage. 91 (2010) 677. https://doi.org/10.1016/j.jenvman.2009.09.031
- Z. Rezvani, M. Sarkarat, A. Khataee, K. Nejati, Cryst. Res. Technol. 47 (2012) 1172. https://doi.org/10.1002/crat.201200263
- S.-M. Xu, T. Pan, Y.-B. Dou, H. Yan, S.-T. Zhang, F.-Y. Ning, W.-Y. Shi, M. Wei, J. Phys. Chem. C 119 (2015) 18823. https://doi.org/10.1021/acs.jpcc.5b01819
- G. Huang, J. Chen, D. Wang, Y. Sun, L. Jiang, Y. Yu, S. Ma, Y. Kang, Mater. Lett. 173 (2016) 227. https://doi.org/10.1016/j.matlet.2016.03.073
- Y. Fu, F. Ning, S. Xu, H. An, M. Shao, M. Wei, J. Mater. Chem. A 4 (2016) 3907. https://doi.org/10.1039/C5TA10093C
- Y. Ao, D. Wang, P. Wang, C. Wang, J. Hou, J. Qian, Mater. Res. Bull. 80 (2016) 23. https://doi.org/10.1016/j.materresbull.2016.03.033
- H. Li, J. Li, C. Xu, P. Yang, D.H. Ng, P. Song, M. Zuo, J. Alloys Compd. 698 (2017) 852. https://doi.org/10.1016/j.jallcom.2016.12.310
- D.P. Sahoo, S. Nayak, K.H. Reddy, S. Martha, K. Parida, Inorg. Chem. 57 (2018) 3840. https://doi.org/10.1021/acs.inorgchem.7b03213
- F. Khodam, Z. Rezvani, A.R. Amani-Ghadim, RSC Adv. 5 (2015) 19675. https://doi.org/10.1039/C4RA17001F
- J.-C.G. Bunzli, Acc. Chem. Res. 39 (2006) 53. https://doi.org/10.1021/ar0400894
- A.-W. Xu, Y. Gao, H.-Q. Liu, J. Catal. 207 (2002) 151. https://doi.org/10.1006/jcat.2002.3539
- H. Dotan, K. Sivula, M. Gratzel, A. Rothschild, S.C. Warren, Energy Environ. Sci. 4 (2011) 958. https://doi.org/10.1039/C0EE00570C
- J. Fernandez, C. Barriga, M. Ulibarri, F. Labajos, V. Rives, Chem. Mater. 9 (1997) 312. https://doi.org/10.1021/cm9603720
- P. Gunawan, R. Xu, J. Phys. Chem. C 113 (2009) 17206. https://doi.org/10.1021/jp905884n
- T. Stumpf, H. Curtius, C. Walther, K. Dardenne, K. Ufer, T. Fanghanel, Environ. Sci. Technol. 41 (2007) 3186. https://doi.org/10.1021/es0624873
- S. Pausova, J. Krysa, J. Jirkovsky, C. Forano, G. Mailhot, V. Prevot, Appl. Catal. B: Environ. 170 (2015) 25.
- D.G. Evans, X. Duan, Chem. Commun. (2006) 485.
- H. Ali, M. Abou-Mesalam, M. El-Shorbagy, J. Phys. Chem. Solids 71 (2010) 51. https://doi.org/10.1016/j.jpcs.2009.10.008
- K.H. Reddy, S. Martha, K. Parida, Inorg. Chem. 52 (2013) 6390. https://doi.org/10.1021/ic400159m
- J.L. Gunjakar, I.Y. Kim, J.M. Lee, N.-S. Lee, S.-J. Hwang, Energy Environ. Sci. 6 (2013) 1008. https://doi.org/10.1039/c3ee23989f
- Y.P. Xie, G.S. Wang, J. Colloid Interface Sci. 430 (2014) 1. https://doi.org/10.1016/j.jcis.2014.05.020
- M. Rauf, M. Meetani, S. Hisaindee, Desalination 276 (2011) 13. https://doi.org/10.1016/j.desal.2011.03.071
- J. Liqiang, Q. Yichun, W. Baiqi, L. Shudan, J. Baojiang, Y. Libin, F. Wei, F. Honggang, S. Jiazhong, Sol. Energy Mater. Sol. Cells 90 (2006) 1773. https://doi.org/10.1016/j.solmat.2005.11.007
- C. Jayachandraiah, K.S. Kumar, G. Krishnaiah, N.M. Rao, J. Alloys Compd. 623 (2015) 248. https://doi.org/10.1016/j.jallcom.2014.10.067
Cited by
- Design and engineering of layered double hydroxide based catalysts for water depollution by advanced oxidation processes: a review vol.8, pp.8, 2018, https://doi.org/10.1039/c9ta13522g
- Research Progress in the Field of Adsorption and Catalytic Degradation of Sewage by Hydrotalcite‐Derived Materials vol.20, pp.4, 2018, https://doi.org/10.1002/tcr.201900046
- Toxicity of Zn-Fe Layered Double Hydroxide to Different Organisms in the Aquatic Environment vol.26, pp.2, 2018, https://doi.org/10.3390/molecules26020395
- Sonochemical Synthesis, Characterization and Optical Properties of Tb-Doped CdSe Nanoparticles: Synergistic Effect between Photocatalysis and Sonocatalysis vol.11, pp.2, 2021, https://doi.org/10.3390/nano11020378
- A brief review on modified layered double hydroxides for H2 production through photoinduced H2O splitting vol.16, pp.None, 2021, https://doi.org/10.1016/j.enmm.2021.100451
- Layered double hydroxide (LDH)-based materials: A mini-review on strategies to improve the performance for photocatalytic water splitting vol.64, pp.None, 2022, https://doi.org/10.1016/j.jechem.2021.04.050
- Ingeniously designed Silica nanostructures as an exceptional support: Opportunities, potential challenges and future prospects for viable degradation of pesticides vol.301, pp.None, 2022, https://doi.org/10.1016/j.jenvman.2021.113821