DOI QR코드

DOI QR Code

Neodymium doped mixed metal oxide derived from CoAl-layered double hydroxide: Considerable enhancement in visible light photocatalytic activity

  • Khodam, Fatemeh (Research Laboratory of Environmental Protection Technology, Faculty of Chemistry, Department of Applied Chemistry, University of Tabriz) ;
  • Amani-Ghadim, Hamid Reza (Materials Engineering Faculty, Sahand University of Technology) ;
  • Aber, Soheil (Research Laboratory of Environmental Protection Technology, Faculty of Chemistry, Department of Applied Chemistry, University of Tabriz) ;
  • Amani-Ghadim, Ali Reza (Research Laboratory of Applied Chemistry, Department of Chemistry, Faculty of Basic Science, Azarbaijan Shahid Madani University) ;
  • Ahadzadeh, Iraj (Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz)
  • Received : 2018.04.18
  • Accepted : 2018.08.03
  • Published : 2018.12.25

Abstract

Herein,the Neodymium ion ($Nd^{3+}$) doped CoAl-LDH have been successfully prepared via co-precipitation method and was used as a precursor of Nd-doped CoAl-mixed metal oxides (MMO). The photocatalytic activity of doped LDH and MMO was investigated in the degradation of an azo dye, C.I. Acid Red 14, under visible light irradiation. DRS and PL analysis demonstrated decreasing in the band gap energy and recombination of photo-induced charge carriers of Nd-doped LDH and MMO compared with the pristine CoAL-LDH. Due to significant difference in photocatalytic performance. A power law empirical kinetic model was obtained for predicting the photocatalytic degradation efficiency.

Keywords

Acknowledgement

Supported by : University of Tabriz, Azarbaijan Shahid Madani University

References

  1. K. Nakata, A. Fujishima, J. Photochem. Photobiol. C: Photochem. Rev. 13 (2012) 169. https://doi.org/10.1016/j.jphotochemrev.2012.06.001
  2. A. Fujishima, T.N. Rao, D.A. Tryk, J. Photochem. Photobiol. C: Photochem. Rev. 1 (2000) 1. https://doi.org/10.1016/S1389-5567(00)00002-2
  3. A. Fujishima, X. Zhang, D.A. Tryk, Surf. Sci. Rep. 63 (2008) 515. https://doi.org/10.1016/j.surfrep.2008.10.001
  4. I.A. Alaton, I.A. Balcioglu, D.W. Bahnemann, Water Res. 36 (2002) 1143. https://doi.org/10.1016/S0043-1354(01)00335-9
  5. A. Gupta, A. Pal, C. Sahoo, Dyes Pigm. 69 (2006) 224. https://doi.org/10.1016/j.dyepig.2005.04.001
  6. H. Tada, T. Kiyonaga, S.-i. Naya, Chem. Soc. Rev. 38 (2009) 1849. https://doi.org/10.1039/b822385h
  7. L. Huang, S. Chu, J. Wang, F. Kong, L. Luo, Y. Wang, Z. Zou, Catal. Today 212 (2013) 81. https://doi.org/10.1016/j.cattod.2012.08.026
  8. A. Di Paola, E. Garcia-Lopez, G. Marci, L. Palmisano, J. Hazard. Mater. 211 (2012) 3.
  9. X. Chen, S.S. Mao, Chem. Rev. 107 (2007) 2891. https://doi.org/10.1021/cr0500535
  10. H. Lachheb, E. Puzenat, A. Houas, M. Ksibi, E. Elaloui, C. Guillard, J.-M. Herrmann, Appl. Catal. B: Environ. 39 (2002) 75. https://doi.org/10.1016/S0926-3373(02)00078-4
  11. M. Zhou, J. Yu, S. Liu, P. Zhai, L. Jiang, J. Hazard. Mater. 154 (2008) 1141. https://doi.org/10.1016/j.jhazmat.2007.11.021
  12. Y.-K. Lai, J.-Y. Huang, H.-F. Zhang, V.-P. Subramaniam, Y.-X. Tang, D.-G. Gong, L. Sundar, L. Sun, Z. Chen, C.-J. Lin, J. Hazard. Mater. 184 (2010) 855. https://doi.org/10.1016/j.jhazmat.2010.08.121
  13. M. Balat, Int. J. Hydrogen Energy 33 (2008) 4013. https://doi.org/10.1016/j.ijhydene.2008.05.047
  14. L. Zhang, X. Li, Z. Chang, D. Li, Mater. Sci. Semicond. Process. 14 (2011) 52. https://doi.org/10.1016/j.mssp.2011.01.004
  15. D. Yang, S. Song, Y. Zou, X. Wang, S. Yu, T. Wen, H. Wang, T. Hayat, A. Alsaedi, X. Wang, Chem. Eng. J. 323 (2017) 143. https://doi.org/10.1016/j.cej.2017.03.158
  16. S. Kumar, M.A. Isaacs, R. Trofimovaite, L. Durndell, C.M. Parlett, R.E. Douthwaite, B. Coulson, M.C. Cockett, K. Wilson, A.F. Lee, Appl. Catal. B: Environ. 209 (2017) 394. https://doi.org/10.1016/j.apcatb.2017.03.006
  17. M. Wen, T. Xiong, Z. Zang, W. Wei, X. Tang, F. Dong, Opt. Express 24 (2016) 10205. https://doi.org/10.1364/OE.24.010205
  18. Y. Ye, Z. Zang, T. Zhou, F. Dong, S. Lu, X. Tang, W. Wei, Y. Zhang, J. Catal. 357 (2018) 100. https://doi.org/10.1016/j.jcat.2017.11.002
  19. H. Huang, J. Zhang, L. Jiang, Z. Zang, J. Alloys Compd. 718 (2017) 112. https://doi.org/10.1016/j.jallcom.2017.05.132
  20. L. Mohapatra, K. Parida, Sep. Purif. Technol. 91 (2012) 73. https://doi.org/10.1016/j.seppur.2011.10.028
  21. J.W. Boclair, P.S. Braterman, Chem. Mater. 11 (1999) 298. https://doi.org/10.1021/cm980523u
  22. A. Mantilla, G. Jacome-Acatitla, G. Morales-Mendoza, F. Tzompantzi, R. Gomez, Ind. Eng. Chem. Res. 50 (2010) 2762.
  23. C.G. Silva, Y. Bouizi, V. Fornes, H. Garci'a, J. Am. Chem. Soc. 131 (2009) 13833. https://doi.org/10.1021/ja905467v
  24. K. Parida, N. Baliarsingh, B.S. Patra, J. Das, J. Mol. Catal. A: Chem. 267 (2007) 202. https://doi.org/10.1016/j.molcata.2006.11.035
  25. Q. Wang, D. O'Hare, Chem. Rev. 112 (2012) 4124. https://doi.org/10.1021/cr200434v
  26. P.R. Chowdhury, K.G. Bhattacharyya, Dalton Trans. 44 (2015) 6809. https://doi.org/10.1039/C5DT00257E
  27. J. Wang, J. Li, Y. Xie, C. Li, G. Han, L. Zhang, R. Xu, X. Zhang, J. Environ. Manage. 91 (2010) 677. https://doi.org/10.1016/j.jenvman.2009.09.031
  28. Z. Rezvani, M. Sarkarat, A. Khataee, K. Nejati, Cryst. Res. Technol. 47 (2012) 1172. https://doi.org/10.1002/crat.201200263
  29. S.-M. Xu, T. Pan, Y.-B. Dou, H. Yan, S.-T. Zhang, F.-Y. Ning, W.-Y. Shi, M. Wei, J. Phys. Chem. C 119 (2015) 18823. https://doi.org/10.1021/acs.jpcc.5b01819
  30. G. Huang, J. Chen, D. Wang, Y. Sun, L. Jiang, Y. Yu, S. Ma, Y. Kang, Mater. Lett. 173 (2016) 227. https://doi.org/10.1016/j.matlet.2016.03.073
  31. Y. Fu, F. Ning, S. Xu, H. An, M. Shao, M. Wei, J. Mater. Chem. A 4 (2016) 3907. https://doi.org/10.1039/C5TA10093C
  32. Y. Ao, D. Wang, P. Wang, C. Wang, J. Hou, J. Qian, Mater. Res. Bull. 80 (2016) 23. https://doi.org/10.1016/j.materresbull.2016.03.033
  33. H. Li, J. Li, C. Xu, P. Yang, D.H. Ng, P. Song, M. Zuo, J. Alloys Compd. 698 (2017) 852. https://doi.org/10.1016/j.jallcom.2016.12.310
  34. D.P. Sahoo, S. Nayak, K.H. Reddy, S. Martha, K. Parida, Inorg. Chem. 57 (2018) 3840. https://doi.org/10.1021/acs.inorgchem.7b03213
  35. F. Khodam, Z. Rezvani, A.R. Amani-Ghadim, RSC Adv. 5 (2015) 19675. https://doi.org/10.1039/C4RA17001F
  36. J.-C.G. Bunzli, Acc. Chem. Res. 39 (2006) 53. https://doi.org/10.1021/ar0400894
  37. A.-W. Xu, Y. Gao, H.-Q. Liu, J. Catal. 207 (2002) 151. https://doi.org/10.1006/jcat.2002.3539
  38. H. Dotan, K. Sivula, M. Gratzel, A. Rothschild, S.C. Warren, Energy Environ. Sci. 4 (2011) 958. https://doi.org/10.1039/C0EE00570C
  39. J. Fernandez, C. Barriga, M. Ulibarri, F. Labajos, V. Rives, Chem. Mater. 9 (1997) 312. https://doi.org/10.1021/cm9603720
  40. P. Gunawan, R. Xu, J. Phys. Chem. C 113 (2009) 17206. https://doi.org/10.1021/jp905884n
  41. T. Stumpf, H. Curtius, C. Walther, K. Dardenne, K. Ufer, T. Fanghanel, Environ. Sci. Technol. 41 (2007) 3186. https://doi.org/10.1021/es0624873
  42. S. Pausova, J. Krysa, J. Jirkovsky, C. Forano, G. Mailhot, V. Prevot, Appl. Catal. B: Environ. 170 (2015) 25.
  43. D.G. Evans, X. Duan, Chem. Commun. (2006) 485.
  44. H. Ali, M. Abou-Mesalam, M. El-Shorbagy, J. Phys. Chem. Solids 71 (2010) 51. https://doi.org/10.1016/j.jpcs.2009.10.008
  45. K.H. Reddy, S. Martha, K. Parida, Inorg. Chem. 52 (2013) 6390. https://doi.org/10.1021/ic400159m
  46. J.L. Gunjakar, I.Y. Kim, J.M. Lee, N.-S. Lee, S.-J. Hwang, Energy Environ. Sci. 6 (2013) 1008. https://doi.org/10.1039/c3ee23989f
  47. Y.P. Xie, G.S. Wang, J. Colloid Interface Sci. 430 (2014) 1. https://doi.org/10.1016/j.jcis.2014.05.020
  48. M. Rauf, M. Meetani, S. Hisaindee, Desalination 276 (2011) 13. https://doi.org/10.1016/j.desal.2011.03.071
  49. J. Liqiang, Q. Yichun, W. Baiqi, L. Shudan, J. Baojiang, Y. Libin, F. Wei, F. Honggang, S. Jiazhong, Sol. Energy Mater. Sol. Cells 90 (2006) 1773. https://doi.org/10.1016/j.solmat.2005.11.007
  50. C. Jayachandraiah, K.S. Kumar, G. Krishnaiah, N.M. Rao, J. Alloys Compd. 623 (2015) 248. https://doi.org/10.1016/j.jallcom.2014.10.067

Cited by

  1. Design and engineering of layered double hydroxide based catalysts for water depollution by advanced oxidation processes: a review vol.8, pp.8, 2018, https://doi.org/10.1039/c9ta13522g
  2. Research Progress in the Field of Adsorption and Catalytic Degradation of Sewage by Hydrotalcite‐Derived Materials vol.20, pp.4, 2018, https://doi.org/10.1002/tcr.201900046
  3. Toxicity of Zn-Fe Layered Double Hydroxide to Different Organisms in the Aquatic Environment vol.26, pp.2, 2018, https://doi.org/10.3390/molecules26020395
  4. Sonochemical Synthesis, Characterization and Optical Properties of Tb-Doped CdSe Nanoparticles: Synergistic Effect between Photocatalysis and Sonocatalysis vol.11, pp.2, 2021, https://doi.org/10.3390/nano11020378
  5. A brief review on modified layered double hydroxides for H2 production through photoinduced H2O splitting vol.16, pp.None, 2021, https://doi.org/10.1016/j.enmm.2021.100451
  6. Layered double hydroxide (LDH)-based materials: A mini-review on strategies to improve the performance for photocatalytic water splitting vol.64, pp.None, 2022, https://doi.org/10.1016/j.jechem.2021.04.050
  7. Ingeniously designed Silica nanostructures as an exceptional support: Opportunities, potential challenges and future prospects for viable degradation of pesticides vol.301, pp.None, 2022, https://doi.org/10.1016/j.jenvman.2021.113821