DOI QR코드

DOI QR Code

Graphene oxide dispersed polyvinyl chloride/alkyd green nanocomposite film: Processing and physico-mechanical properties

  • Yadav, Mithilesh (Materials Research Laboratory, Department of Chemistry) ;
  • Ahmad, Sharif (Materials Research Laboratory, Department of Chemistry) ;
  • Chiu, Fang-Chyou (Department of Chemical and Materials Engineering, Chang Gung University)
  • 투고 : 2018.04.15
  • 심사 : 2018.07.27
  • 발행 : 2018.12.25

초록

Graphene oxide (GO) reinforced Polyvinyl chloride (PVC)-Waterborne Castor Alkyd (WCA) nanocomposites (PVC/WCA/GO) films were processed through solution blending technique. TGA showed that the thermal stability of PVC/WCA/GO-0.5 films was better than that of PVC/WCA blend film. With incorporation of 0.5 wt.% GO, the tensile strength and elastic modulus of the blend nanocomposite have significantly improved by about 260% and 185%, respectively, compared with neat polymer. The physicomechanical properties of these films suggest that the PVC/WCA/GO nanocomposite films may have a potential scope for their application in packaging industries. The results are supported by characterizations like FTIR, XRD, TEM and FESEM.

키워드

과제정보

연구 과제 주관 기관 : Chang Gung Memorial Hospital

참고문헌

  1. S. Pathan, S. Ahmad, ACS Sustainable Chem. Eng. 1 (2013) 1246. https://doi.org/10.1021/sc4001077
  2. M. Alam, D. Akram, E. Sharmin, F. Zafar, S. Ahmad, Arabian J. Chem. 7 (2014) 469. https://doi.org/10.1016/j.arabjc.2013.12.023
  3. D. Zhang, E.A. Chanona, N. Shah, ACS Sustainable Chem. Eng. 5 (2017) 4388. https://doi.org/10.1021/acssuschemeng.7b00429
  4. J.M. Raquez, M. Deleg'lise, M.F. Lacrampe, P. Krawczak, Prog. Polym. Sci. 35 (2010) 487. https://doi.org/10.1016/j.progpolymsci.2010.01.001
  5. S.A. Madbouly, J.U. Otaigbe, Macromolecules 38 (2005) 10178. https://doi.org/10.1021/ma0511088
  6. O. Saravari, P. Phapant, V. Pimpan, J. Appl. Polym. Sci. 96 (2005) 1170. https://doi.org/10.1002/app.21009
  7. M. Gallstedt, M.S. Hedenqvist, J. Appl. Polym. Sci. 91 (2004) 60. https://doi.org/10.1002/app.13218
  8. B.K.G. Theng, The Chemistry of Clay Organic Reactions, Wiley, New York, 1974.
  9. B. Mehta, M. Kathalewar, A. Sabnis, J. Appl. Polym. Sci. 40354 (2014).
  10. A.B. Nurfatimah, Y.C. Ching, C.A. Luqman, T.R. Chantara, A.I. Nor, Mater. Des. 65 (2015) 204.
  11. B. Nurfatimah, Y.C. Ching, C.A. Luqman, T.R. Chantara, A.I. Nor, Compos. Appl. Sci. Manuf. 63 (2014) 45. https://doi.org/10.1016/j.compositesa.2014.03.023
  12. S. Rajendran, R. Prabhu, M.M. Usha Rani, Int. J. Electrochem. Sci. 3 (2008) 282.
  13. S. Mudigoudra, S.P. Masti, R.B. Chougale, J. Eng. Sci. 1 (2012) 63.
  14. R. Saravanan, S. Karthikeyan, V.K. Gupta, G. Sekaran, V. Narayanan, A. Stephen, Mater. Sci. Eng. C 33 (1) (2013) 91. https://doi.org/10.1016/j.msec.2012.08.011
  15. R. Saravanan, E. Thirumal, V.K. Gupta, V. Narayanan, A. Stephen, J. Mol. Liq. 177 (2013) 394. https://doi.org/10.1016/j.molliq.2012.10.018
  16. R. Saravanan, V.K. Gupta, T. Prakash, V. Narayanan, A. Stephen, J. Mol. Liq. 178 (2013) 88. https://doi.org/10.1016/j.molliq.2012.11.012
  17. V.K. Gupta, R. Jain, A. Nayak, S. Agarwal, M. Shrivastava, Mater. Sci. Eng. C 31 (2011) 1062. https://doi.org/10.1016/j.msec.2011.03.006
  18. A. Asfaram, M. Ghaedi, S. Agarwal, I. Tyagi, V.K. Gupta, RSC Adv. 5 (2015) 18438. https://doi.org/10.1039/C4RA15637D
  19. M. Ghaedi, S. Hajjati, Z. Mahmudi, I. Tyagi, S. Agarwal, A. Maity, V.K. Gupta, Chem. Eng. J. 268 (2015) 28. https://doi.org/10.1016/j.cej.2014.12.090
  20. H. Khani, M.K. Rofouei, P. Arab, V.K. Gupta, Z. Vafaei, J. Hazard. Mater. 183 (1) (2010) 402. https://doi.org/10.1016/j.jhazmat.2010.07.039
  21. T.A. Saleh, V.K. Gupta, J. Colloid Interface Sci. 371 (1) (2012) 101. https://doi.org/10.1016/j.jcis.2011.12.038
  22. M. Devaraj, R. Saravanan, R.K. Deivasigamani, V.K. Gupta, F. Gracia, S. Jayadevan, J. Mol. Liq. 221 (2016) 930. https://doi.org/10.1016/j.molliq.2016.06.028
  23. R. Saravanan, M.M. Khan, V.K. Gupta, E. Mosquera, F. Gracia, V. Narayanang, A. Stephen, RSC Adv. 5 (2015) 34645. https://doi.org/10.1039/C5RA02557E
  24. R. Saravanan, M. Mansoob Khan, V.K. Gupta, E. Mosquera, F. Gracia, V. Narayanan, A. Stephen, J. Colloid Interface Sci. 452 (2015) 126. https://doi.org/10.1016/j.jcis.2015.04.035
  25. R. Saravanan, N. Karthikeyan, V.K. Gupta, E. Thirumal, P. Thangadurai, V. Narayanan, A. Stephen, Mater. Sci. Eng. C 33 (2013) 2235. https://doi.org/10.1016/j.msec.2013.01.046
  26. R. Saravanan, S. Joicy, V.K. Gupta, V. Narayanan, A. Stephen, Mater. Sci. Eng. C 33 (2013) 4725. https://doi.org/10.1016/j.msec.2013.07.034
  27. S. Rajendran, M. Mansoob Khan, F. Gracia1, J. Qin, V.K. Gupta, S. Arumainathan, Sci. Rep. 6 (2016) 31641. https://doi.org/10.1038/srep31641
  28. R. Saravanan, E. Sacari, F. Gracia, M.M. Khan, E. Mosquera, V.K. Gupta, J. Mol. Liq. 221 (2016) 1029. https://doi.org/10.1016/j.molliq.2016.06.074
  29. A. Mittal, J. Mittal, A. Malviya, V.K. Gupta, J. Colloid Interface Sci. 344 (2010) 497. https://doi.org/10.1016/j.jcis.2010.01.007
  30. Q. Wang, X. Zhang, Y. Jin, H. Gui, W. Dong, J. Lai, Y. Liu, J. Gao, F. Huang, Z. Song, J. Qiao, Macromol. Mater. Eng. 291 (2006) 655. https://doi.org/10.1002/mame.200600023
  31. V.K. Gupta, R. Kumar, A. Nayak, T.A. Saleh, M.A. Barakat, Adv. Colloid Interface Sci. 193-194 (2013) 24. https://doi.org/10.1016/j.cis.2013.03.003
  32. V.K. Gupta, T.A. Saleh, Environ. Sci. Pollut. Res. 20 (2013) 2828. https://doi.org/10.1007/s11356-013-1524-1
  33. V.K. Gupta, A. Nayak, S. Agarwal, I. Tyagi, J. Colloids Surf. Sci. 417 (2014) 420. https://doi.org/10.1016/j.jcis.2013.11.067
  34. T.A. Saleh, V.K. Gupta, J. Colloid Interface Sci. 362 (2011) 337. https://doi.org/10.1016/j.jcis.2011.06.081
  35. N. Mohammadi, H. Khani, V.K. Gupta, E. Amereh, S. Agarwal, J. Colloid Interface Sci. 362 (2011) 457. https://doi.org/10.1016/j.jcis.2011.06.067
  36. T.A. Saleh, V.K. Gupta, Adv. Colloid Interface Sci. 211 (2014) 92.
  37. S. Karthikeyan, V.K. Gupta, R. Boopathy, A. Titus, G. Sekaran, J. Mol. Liq. 173 (2012) 153. https://doi.org/10.1016/j.molliq.2012.06.022
  38. K. Muller, E. Bugnicourt, M. Latorre, M. Jorda, Y.E. Sanz, J.M. Lagaron, O. Miesbauer, A. Bianchin, S. Hankin, U. Bolz, G. Perez, M. Jesdinszki, M. Lidner, Z. Scheuerer, S. Castello, M. Schmid, Nanomaterials 7 (2017) 74. https://doi.org/10.3390/nano7040074
  39. T.A. Saleh, V.K. Gupta, Sep. Purif. Technol. 89 (2012) 245. https://doi.org/10.1016/j.seppur.2012.01.039
  40. P.J.P. Espitia, N.F.F. Soares, J.S.R. Coimbra, N.J. de Andrade, R.S. Cruz, E.A.A. Medeiros, Food Bioprocess Technol. 5 (2012) 1447. https://doi.org/10.1007/s11947-012-0797-6
  41. V. Sivanjineyulu, Y.H. Chang, F.C. Chiu, J. Polym. Res. 24 (2017) 130. https://doi.org/10.1007/s10965-017-1289-1
  42. J. Ding, Y. Huang, T. Han, Iran. Polym. J. 25 (2016) 69. https://doi.org/10.1007/s13726-015-0402-8
  43. S. Hassanajili, M.T. Sajedi, Iran. Polym. J. 25 (2016) 697-710. https://doi.org/10.1007/s13726-016-0458-0
  44. C.C. Tuan, N.P. James, Z. Lin, Y. Chen, Y. Liu, K.S. Moon, Z. Li, C.P. Wong, ACS Appl. Mater. Interfaces 9 (2017) 8437. https://doi.org/10.1021/acsami.6b15771
  45. X. Jing, H.Y. Mi, M.R. Salick, T.M. Cordie, X.F. Peng, L.S. Turng, Mater. Sci. Eng. C 49 (2015) 40. https://doi.org/10.1016/j.msec.2014.12.060
  46. C. Bora, P. Gogoi, S. Baglari, S.K. Dolui, J. Appl. Polym. Sci. 129 (2013) 3432. https://doi.org/10.1002/app.39068
  47. Y. Chen, S. Zhou, G. Chen, L. Wu, Prog. Org. Coat. 54 (2005) 120. https://doi.org/10.1016/j.porgcoat.2004.03.013
  48. D. Robati, B. Mirza, M. Rajabi, O. Moradi, I. Tyagi, S. Agarwal, V.K. Gupta, Chem. Eng. J. 284 (2016) 687. https://doi.org/10.1016/j.cej.2015.08.131
  49. V.K. Gupta, N. Atar, M.L. Yola, Z. Ustundag, L. Uzun, Water Res. 48 (2014) 210. https://doi.org/10.1016/j.watres.2013.09.027
  50. P.P. Zuo, H.F. Feng, Z.Z. Xu, L.F. Zhang, Y.L. Zhang, W. Xia, W.Q. Zhang, Chem. Cent. J. 7 (2013) 39. https://doi.org/10.1186/1752-153X-7-39
  51. J. Wei, Z. Zang, Y. Zhang, M. Wang, J. Du, X. Tang, Opt. Lett. 42 (5) (2017) 911. https://doi.org/10.1364/OL.42.000911
  52. Z. Zang, X. Zeng, M. Wang, W. Hu, C. Liu, X. Tang, Sens. Actuators B Chem. 252 (2017) 1179. https://doi.org/10.1016/j.snb.2017.07.144
  53. H. Huang, J. Zhang, L. Jiang, Z. Zang, J. Alloys Compd. 718 (2017) 112. https://doi.org/10.1016/j.jallcom.2017.05.132
  54. N.M.N. Huynh, Z.A. Boeva, J.H. Smatt, M. Pesonenc, T. Lindfors, RSC Adv. 8 (2018) 17645. https://doi.org/10.1039/C8RA03080D
  55. H. Akhina, M.R.G. Nair, N. Kalarikkal, K.P. Pramoda, T.H. Ru, L. Kailas, S. Thomas, Polym. Eng. Sci. 58 (S1) (2018) E104. https://doi.org/10.1002/pen.24711
  56. K.W. Lee, J.W. Chung, S.Y. Kwak, Appl. Mater. Interfaces 9 (2017) 33149. https://doi.org/10.1021/acsami.7b10257
  57. W.S. Hummers Jr., R.E. Offeman, J. Am. Chem. Soc. 80 (1958) 1339. https://doi.org/10.1021/ja01539a017
  58. T. Ramanathan, A.A. Abdala, S. Stankovich, D.A. Dikin, M. Herrera-Alonso, R.D. Piner, D.H. Adamson, H.C. Schniepp, X. Chen, R.S. Ruoff, Nat. Nanotechnol. 3 (2008) 327. https://doi.org/10.1038/nnano.2008.96
  59. S. Pathan, S. Ahmad, J. Mater. Chem. A 14227 (2013).
  60. T.C. Patton, Alkyd Resin Technology, Interscience Publishers, New York, 1962.
  61. O. Saravari, P. Phapant, V. Pimpan, J. Appl. Polym. Sci. 96 (2005) 1170. https://doi.org/10.1002/app.21009
  62. U. Riaz, A. Vashist, S.A. Ahmad, S. Ahmad, S.M. Ashraf, Biomass Bioenergy 34 (2010) 396. https://doi.org/10.1016/j.biombioe.2009.12.002
  63. U. Konwar, N. Karak, Polym. J. 43 (2011) 565. https://doi.org/10.1038/pj.2011.19
  64. D. Han, L. Yan, W. Chen, W. Li, Carbohydr. Polym. 83 (2011) 653.
  65. M. Yadav, K.Y. Rhee, I.H. Jung, S.J. Park, Cellulose 20 (2013) 687. https://doi.org/10.1007/s10570-012-9855-5
  66. S. Rajendran, M. Ramesh Prabhu, M. Usha Rani, Int. J. Electrochem. Sci. 3 (2008) 282.
  67. O. Saravari, P. Phapant, V. Pimpan, J. Appl. Polym. Sci. 96 (2005) 1170. https://doi.org/10.1002/app.21009
  68. H. Leila, K. Xiaohua, S.N. Suresh, Biomacromolecules 10 (2009) 884. https://doi.org/10.1021/bm801411w
  69. M. Yadav, K.Y. Rhee, S.J. Park, Carbohydr. Polym. 110 (2014) 18. https://doi.org/10.1016/j.carbpol.2014.03.037
  70. S. Sejal, Q. Anjum, D. Singh, N.L. Singh, K.P. Singh, V. Shrinet, Indian J. Pure Appl. Phys. 46 (2008) 439.
  71. K. Kulasekarapandian, S. Jayanthi, A. Muthukumari, A. Arulsankar, B. Sundaresan, Ibm J. Res. Dev. 5 (2013) 30.
  72. J. Ma, C. Liu, R. Li, J. Wang, J. Appl. Polym. Sci. 123 (2012) 2933. https://doi.org/10.1002/app.34901
  73. K.M. Lim, Y.C. Ching, S.N. Gan, Polymer 7 (2015) 2031. https://doi.org/10.3390/polym7101498
  74. M.R. Loos, J. Yang, D.L. Feke, I. Manas-Zloczower, S. Unal, U. Younes, Compos. B Eng. 44 (2013) 740. https://doi.org/10.1016/j.compositesb.2012.01.038
  75. R.Y. Bao, Jun Cao, Z.Y. Liu, W. Yang, B.H. Xie, M.B. Yang, J. Mater. Chem. A 2 (2014) 3190. https://doi.org/10.1039/C3TA14554A
  76. K.W. Putz, O.C. Compton, M.J. Palmeri, S.T. Nguyen, L.C. Brinson, Funct. Mater. 20 (2010) 3322. https://doi.org/10.1002/adfm.201000723
  77. X. Zhao, Q.H. Zhang, D.J. Chen, P. Lu, Macromolecules 43 (2010) 2357. https://doi.org/10.1021/ma902862u
  78. P. Bhawal, S. Ganguly, T.K. Chaki, N.C. Das, RSC Adv. 6 (2016) 20781. https://doi.org/10.1039/C5RA24914G
  79. L. Yang, W.A. Yee, S.L. Phua, J. Kong, H. Ding, J.W. Cheah, X.A. Lu, RSC Adv. 2 (2012) 2208. https://doi.org/10.1039/c2ra00798c
  80. N. Ahmad, A. Kausar, B. Muhammad, Polym. Plast. Technol. Eng. 55 (10) (2016) 1076. https://doi.org/10.1080/03602559.2016.1163587
  81. M.M. Gudarzi, F. Sharif, eXPRESS Polym. Lett. 6 (2012) 1017. https://doi.org/10.3144/expresspolymlett.2012.107
  82. M. Ali Bagherinia, M. Sheydaei, M. Giahi, J. Polym.Eng. 37 (2017) 1. https://doi.org/10.1515/polyeng-2015-0370
  83. H. Wang, G. Xie, Z. Ying, Y. Tong, Y. Zeng, J. Mater. Sci. Technol. 31 (2015) 340. https://doi.org/10.1016/j.jmst.2014.09.009
  84. R. Li, C. Liu, J. Ma, Carbohydr. Polym. 84 (2011) 631. https://doi.org/10.1016/j.carbpol.2010.12.041
  85. M. Ionita, M.A. Pandele, H. Iovu, Carbohydr. Polym. 94 (2013) 339. https://doi.org/10.1016/j.carbpol.2013.01.065
  86. Y. Shen, T. Jing, W. Ren, J. Zhang, Z.G. Jiang, Z.Z. Yu, A. Dasari, Compos. Sci. Technol. 72 (2012) 1430. https://doi.org/10.1016/j.compscitech.2012.05.018
  87. W. Li, Z. Xu, L. Chen, M. Shan, X. Tian, C. Yang, H. Lv, X. Qian, Chem. Eng. J. 237 (2014) 291. https://doi.org/10.1016/j.cej.2013.10.034
  88. C. Wang, M. Frydrych, B. Chen, Soft Matter 7 (2011) 6159. https://doi.org/10.1039/c1sm05321c
  89. S.K. Yadav, S.S. Mahapatra, J.W. Cho, H.C. Park, J.Y. Lee, Fibers Polym.10 (2009) 756. https://doi.org/10.1007/s12221-009-0756-7
  90. M. Fang, K. Wang, H. Lu, Y. Yang, S. Nutt, J. Mater. Chem. 19 (2009) 7098. https://doi.org/10.1039/b908220d
  91. A.D. Campos, J.C. Marconato, S.M.M. Franchetti, Arch. Biol. Technol. 54 (2011) 1367. https://doi.org/10.1590/S1516-89132011000600024
  92. M.I. Ali, A. Ahmed, G. Robson, I. Javed, N. Ali, N. Atiq, A. Hameed, Fungal Biotechnol. 54 (2014) 18.
  93. A.V. Yabannavar, R. Bartha, Appl. Environ. Microbiol. 3608-3636 (1994) 1.
  94. H. Akhina, M.R.G. Nair, N. Kalarikkal, K.P. Pramoda, T.H. Ru, L. Kailas, S. Thomas, Polym. Eng. Sci. 58 (2018) E104. https://doi.org/10.1002/pen.24711
  95. K. Deshmukh, G.M. Joshi, Polym. Test. 34 (2014) 211. https://doi.org/10.1016/j.polymertesting.2014.01.015
  96. N.M.K. Abdel-Gawad1, A.Z. El Dein, D.E.A. Mansour, H.M. Ahmed, M.M.F. Darwish, IEEE Trans. Dielectr. Electr. Insul. 24 (2017) 3490. https://doi.org/10.1109/TDEI.2017.006692
  97. M. Hajibeygia, M. Malekia, M. Shabanianb, Prog. Org. Coat. 122 (2018) 96. https://doi.org/10.1016/j.porgcoat.2018.05.013
  98. N.M.K. Abdel-Gawad, A.Z. El Dein, D.E.A. Mansour, H.M. Ahmed, M.M.F. Darwish, M. Lehtonen, Electr. Power Syst. Res. (2017), doi:http://dx.doi.org/10.1016/j.epsr.2017.11.011.
  99. A.M. Hezmaa, I.S. Elashmawia, E.M. Abdelrazekb, A. Rajeh, M. Kamal, Prog. Nat. Sci. Mater. Int. 27 (2017) 338. https://doi.org/10.1016/j.pnsc.2017.06.001
  100. M. Rahmah, N.M. Nurazzi, A.R.F. Nordyana, S.M.S. Anas, IOP Conf. Ser. Mater. Sci. Eng. 223 (2017) 012048. https://doi.org/10.1088/1757-899X/223/1/012048
  101. C. Chen, Q.H. Yang, Y. Yang, W. Lv, Y. Wen, P.X. Hou, M. Wang, H.M. Cheng, Adv. Mater. 21 (2009) 3007. https://doi.org/10.1002/adma.200803726
  102. C.D. Doyle, Anal. Chem. 33 (1961) 77. https://doi.org/10.1021/ac60169a022
  103. M. Yadav, K.Y. Rhee, Polymer 90 (2012) 165.
  104. M. Yadav, K.Y. Rhee, I.H. Jung, S.J. Park, Cellulose 20 (2013) 687. https://doi.org/10.1007/s10570-012-9855-5
  105. V. Ambrogi, W. Brostow, C. Carfagna, M. Pannico, P. Persico, Polym. Eng. Sci. 52 (2012) 211. https://doi.org/10.1002/pen.22070
  106. M.T. Benaniba, V. Massardier-Nageotte, J. Appl. Polym. Sci. 118 (2010) 3499. https://doi.org/10.1002/app.32713
  107. M. Gong, Q. Zhao, L. Dai, Y. Li, T. Jiang, J. Asian Ceram. Soc. 5 (2017) 160. https://doi.org/10.1016/j.jascer.2017.04.001
  108. H.B. Ma, W.X. Su, Z.X. Tai, D.F. Sun, X.B. Yan, B. Liu, Q.J. Xue, Chin. Sci. Bull. 23 (2012) 3051.
  109. K.H. Liao, S. Aoyama, A.A. Abdala, C. Macosko, Macromolecules 47 (2014) 8311. https://doi.org/10.1021/ma501799z
  110. C.Y. Chen, R.J. Birgeneau, M.A. Kastner, N.W. Preyer, T. Thio, Phys. Rev. B 43 (1991) 392. https://doi.org/10.1103/PhysRevB.43.392
  111. M.J. Jiang, Z.M. Dang, M. Bozlar, F. Miomandre, J.B. Bai, J. Appl. Phys. 106 (2009) 084902/1.
  112. L.L. Sun, B. Li, Y. Zhao, G. Mitchell, W.H. Zhong, Nanotechnology 21 (2010) 305702/1.
  113. Z.C.W. Tang, L.L. Sun, B. Li, W.H. Zhong, Macromol. Mater. Eng. 297 (2012) 420. https://doi.org/10.1002/mame.201100230

피인용 문헌

  1. Properties of Conductive Polyacrylonitrile Fibers Prepared by Using Benzoxazine Modified Carbon Black vol.12, pp.1, 2018, https://doi.org/10.3390/polym12010179
  2. Cellulose Nanocrystal Reinforced Chitosan Based UV Barrier Composite Films for Sustainable Packaging vol.12, pp.1, 2018, https://doi.org/10.3390/polym12010202
  3. Mechanical, thermal, and micro‐ and nanostructural properties of polyvinyl chloride/graphene nanoplatelets nanocomposites vol.41, pp.9, 2018, https://doi.org/10.1002/pc.25669
  4. Highly electro‐responsive composite gel based on functionally tuned graphene filled polyvinyl chloride vol.32, pp.9, 2018, https://doi.org/10.1002/pat.5376