DOI QR코드

DOI QR Code

Influence of ionic liquid structures on polyimide-based gel polymer electrolytes for high-safety lithium batteries

  • Kim, Jae-Kwang (Department of Solar & Energy Engineering, Cheongju University)
  • Received : 2017.12.17
  • Accepted : 2018.07.26
  • Published : 2018.12.25

Abstract

This study first investigates the effect of the choice of cation on three different ionic-liquid-based gel polymer electrolytes (ILPEs) with polyimide membranes. The preparation of three ILPEs based on electrospun membranes of PI and incorporating a room-temperature ionic liquid, 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide complexed with lithium bis(trifluoromethylsulfonyl)imide, is described. ILPE-EMImTFSI has an ionic conductivity as high as $5.3{\times}10^{-3}S\;cm^{-1}$ at $30^{\circ}C$. Furthermore, it shows higher thermal stability and electrochemical oxidation stability compared to the other two ILPEs because of its stronger bonds. These results indicate that polyimide-based ILPE-EMImTFSI is a good candidate for use in high-safety rechargeable lithium metal batteries.

Keywords

References

  1. K. Murata, S. Izuchi, Y. Yoshihisa, Electrochim. Acta 45 (2000) 1501. https://doi.org/10.1016/S0013-4686(99)00365-5
  2. C. Xu, B. Sun, T. Gustafsson, K. Edström, D. Brandell, M. Hahlin, J. Mater. Chem. A 2 (2014) 7256. https://doi.org/10.1039/C4TA00214H
  3. D.-J. You, Z. Yin, Y. Ahn, S. Cho, H. Kim, D. Shin, J. Yoo, Y.S. Kim, J. Ind. Eng. Chem. 52 (2017) 1. https://doi.org/10.1016/j.jiec.2017.03.028
  4. J.H. Shin, W. Henderson, S. Passerini, Electrochem. Commun. 5 (2003) 1016. https://doi.org/10.1016/j.elecom.2003.09.017
  5. M. Keller, A. Varzi, S. Passerini, J. Power Sources 392 (2018) 206. https://doi.org/10.1016/j.jpowsour.2018.04.099
  6. J.H. Baik, D.G. Kim, J. Shim, J.H. Lee, Y.S. Choi, J.C. Lee, Polymer 99 (2016) 704. https://doi.org/10.1016/j.polymer.2016.07.058
  7. K. Karuppasamy, D. Kim, Y.H. Kang, K. Prasanna, H.W. Rhee, J. Ind. Eng. Chem. 52 (2017) 224. https://doi.org/10.1016/j.jiec.2017.03.051
  8. J.-H. Baik, D.-G. Kim, J.H. Lee, S. Kim, D.G. Hong, J.-C. Lee, J. Ind. Eng. Chem. 64 (2018) 453. https://doi.org/10.1016/j.jiec.2018.04.006
  9. L.C. Rodrigues, P.C. Barbosa, M.M. Silva, M.J. Smith, Electrochim. Acta 53 (2007) 1427. https://doi.org/10.1016/j.electacta.2007.03.030
  10. M. Wetjen, G.T. Kim, M. Joost, G.B. Appetecchi, M. Winter, S. Passerini, J. Power Sources 246 (2014) 846. https://doi.org/10.1016/j.jpowsour.2013.08.037
  11. M. Galinski, A. Lewandowski, I. Stepniak, Electrochim. Acta 51 (2006) 5567. https://doi.org/10.1016/j.electacta.2006.03.016
  12. J.K. Kim, G. Cheruvally, X. Li, J.H. Ahn, K.W. Kim, H.J. Ahn, J. Power Sources 178 (2008) 815. https://doi.org/10.1016/j.jpowsour.2007.08.063
  13. H. Ye, J. Huang, J.J. Xu, A. Khalfan, S.G. Greenbaum, J. Electrochem. Soc. 154 (2007) A1048. https://doi.org/10.1149/1.2779962
  14. P. Yang, L. Liu, L. Li, J. Hou, Y. Xu, X. Ren, M. An, N. Li, Electrochim. Acta 115 (2014) 454. https://doi.org/10.1016/j.electacta.2013.10.202
  15. J.K. Kim, J.H. Ahn, P. Jacobsson, Electrochim. Acta 116 (2014) 321. https://doi.org/10.1016/j.electacta.2013.11.061
  16. X. Li, G. Cheruvally, J.K. Kim, J.W. Choi, J.H. Ahn, K.W. Kim, H.J. Ahn, J. Power Sources 167 (2007) 491. https://doi.org/10.1016/j.jpowsour.2007.02.032
  17. Y.-E. Miao, G.-N. Zhu, H. Hou, Y.-Y. Xia, T. Liu, J. Power Sources 226 (2013) 82. https://doi.org/10.1016/j.jpowsour.2012.10.027
  18. L. Kong, Y. Yan, Z. Qiu, Z. Zhou, J. Hu, J. Membr. Sci. 549 (2018) 321. https://doi.org/10.1016/j.memsci.2017.12.028
  19. J.K. Kim, J.W. Choi, G. Cheruvally, J.U. Kim, J.H. Ahn, G.B. Cho, K.W. Kim, H.J. Ahn, Mater. Lett. 61 (2007) 3822. https://doi.org/10.1016/j.matlet.2006.12.038
  20. X. Li, Z. Zhang, K. Yin, L. Yang, K. Tachibana, S. Hirano, J. Power Sources 278 (2015) 128. https://doi.org/10.1016/j.jpowsour.2014.12.053
  21. I. Rey, P. Johansson, J. Lindgren, J.-C. Lassegues, J. Grondin, L. Servant, J. Phys. Chem. A 102 (1998) 3249.
  22. J.-C. Lassegues, J. Grondin, C. Aupetit, P. Johansson, J. Phys. Chem. A 113 (2009) 305. https://doi.org/10.1021/jp806124w
  23. J.K. Kim, A. Matic, J.H. Ahn, P. Jacobsson, J. Power Sources 195 (2010) 7639. https://doi.org/10.1016/j.jpowsour.2010.06.005
  24. S. Duluard, J. Grondin, J.-L. Bruneel, I. Pianet, A. Grelard, G. Campet, M.-H. Delville, J.-C. Lassegues, J. Raman Spectrosc. 39 (2008) 627. https://doi.org/10.1002/jrs.1896
  25. P.C. Howlett, E.I. Izgorodina, M. Forsyth, D.R. MacFarlane, Z. Phys. Chem. 220 (2006) 1483. https://doi.org/10.1524/zpch.2006.220.10.1483
  26. J.K. Kim, J. Scheers, T.J. Park, Y. Kim, ChemSusChem 8 (2015) 636. https://doi.org/10.1002/cssc.201402969
  27. P. Raghavan, X. Zhao, H. Choi, D.H. Lim, J.K. Kim, A. Matic, P. Jacobsoon, C. Nah, J. H. Ahn, Solid State Ionics 262 (2014) 77. https://doi.org/10.1016/j.ssi.2013.10.044
  28. G.G. Eshetu, M. Armand, B. Scrosati, S. Passerini, Angew. Chem. Int. Ed. 53 (2014) 13342. https://doi.org/10.1002/anie.201405910
  29. J.K. Kim, L. Niedzicki, J. Scheers, C.R. Shin, D.H. Lim, W. Wieczorek, P. Johansson, J.H. Ahn, A. Matic, P. Jacobsson, J. Power Sources 224 (2013) 93. https://doi.org/10.1016/j.jpowsour.2012.09.029
  30. M. Montanino, M. Moreno, M. Carewska, G. Maresca, E. Simonetti, R.L. Presti, F. Alessandrini, G.B. Appetecchi, J. Power Sources 269 (2014) 608. https://doi.org/10.1016/j.jpowsour.2014.07.027
  31. M. Holzapfel, C. Jost, P. Novak, Chem. Commun. (2004) 2098.
  32. H. Zheng, K. Jiang, T. Abe, Z. Ogumi, Carbon 44 (2006) 203. https://doi.org/10.1016/j.carbon.2005.07.038

Cited by

  1. Recent applications of ionic liquids in quasi-solid-state lithium metal batteries vol.2, pp.3, 2021, https://doi.org/10.1016/j.gce.2021.03.001
  2. Polymers for Battery Applications-Active Materials, Membranes, and Binders vol.11, pp.43, 2018, https://doi.org/10.1002/aenm.202001984