DOI QR코드

DOI QR Code

Effects of process variables on aqueous-based AlOx insulators for high-performance solution-processed oxide thin-film transistors

  • Huh, Jae-Eun (Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University) ;
  • Park, Jintaek (Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University) ;
  • Lee, Junhee (Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University) ;
  • Lee, Sung-Eun (Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University) ;
  • Lee, Jinwon (Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University) ;
  • Lim, Keon-Hee (Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University) ;
  • Kim, Youn Sang (Program in Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University)
  • Received : 2018.06.04
  • Accepted : 2018.07.24
  • Published : 2018.12.25

Abstract

Recently, aqueous method has attracted lots of attention because it enables the solution-processed metal oxide thin film with high electrical properties in low temperature fabrication condition to various flexible devices. Focusing the development of aqueous route, many researchers are only focused on metal oxide materials. However, for expansive application of the aqueous-based metal oxide films, the systematic study of performance change with process variables for the development of aqueous-based metal oxide insulator film is urgently required. Here, we propose importance of process variables to achieve high electrical-performance metal oxide insulator based on the aqueous method. We found that the significant process variables including precursor solution temperature and humidity during the spincoating process strongly affect chemical, physical, and electrical properties of $AlO_x$ insulators. Through the optimization of significant variables in process, an $AlO_x$ insulator with a leakage current value approximately $10^5$ times smaller and a breakdown voltage value approximately 2-3 times greater than un-optimized $AlO_x$ was realized. Finally, by introducing the optimized $AlO_x$ insulators to solutionprocessed $InO_x$ TFTs, we successfully achieved $InO_x/AlO_x$ TFTs with remarkably high average field-effect mobility of ${\sim}52cm^2V^{-1}\;s^{-1}$ and on/off current ratio of 106 at fabrication temperature of $250^{\circ}C$.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. T. Kamiya, K. Nomura, H. Hosono, Sci. Technol. Adv. Mater. 11 (2010) 1.
  2. E. Fortunato, P. Barquinha, R. Martins, Adv. Mater. 24 (2012) 2945. https://doi.org/10.1002/adma.201103228
  3. S. Kim, Y.J. Choi, Y. Choi, M.S. Kang, J.H. Cho, Adv. Funct. Mater. 27 (2017) 1700651. https://doi.org/10.1002/adfm.201700651
  4. X.G. Yu, T.J. Marks, A. Facchetti, Nat. Mater. 15 (2016) 383. https://doi.org/10.1038/nmat4599
  5. B.N. Pal, B.M. Dhar, K.C. See, H.E. Katz, Nat. Mater. 8 (2009) 898. https://doi.org/10.1038/nmat2560
  6. J.W. Jo, Y.H. Kim, J. Park, J.S. Heo, S. Hwang, W.J. Lee, M.H. Yoon, M.G. Kim, S.K. Park, ACS Appl. Mater. Interfaces 9 (2017) 35114. https://doi.org/10.1021/acsami.7b09523
  7. M.G. Kim, M.G. Kanatzidis, A. Facchetti, T.J. Marks, Nat. Mater. 10 (2011) 382. https://doi.org/10.1038/nmat3011
  8. G.R. Hong, S.S. Lee, Y. Jo, M.J. Choi, Y.C. Kang, B.H. Ryu, K.B. Chung, Y. Choi, S. Jeong, ACS Appl. Mater. Interfaces 8 (2016) 29858. https://doi.org/10.1021/acsami.6b08950
  9. J.H. Park, K. Kim, Y.B. Yoo, S.Y. Park, K.H. Lim, K.H. Lee, H.K. Baik, Y.S. Kim, J. Mater. Chem. C 1 (2013) 7166. https://doi.org/10.1039/c3tc31589d
  10. J. Kim, S.H. Lim, Y.S. Kim, J. Am. Chem. Soc. 132 (2010) 14721. https://doi.org/10.1021/ja104840b
  11. S. Park, C.H. Kim, W.J. Lee, S. Sung, M.H. Yoon, Mater. Sci. Eng. R 114 (2017) 1. https://doi.org/10.1016/j.mser.2017.01.003
  12. K.K. Banger, Y. Yamashita, K. Mori, R.L. Peterson, T. Leedham, J. Rickard, H. Sirringhaus, Nat. Mater. 10 (2011) 45. https://doi.org/10.1038/nmat2914
  13. S.T. Meyers, J.T. Anderson, C.M. Hung, J. Thompson, J.F. Wager, D.A. Keszler, J. Am. Chem. Soc. 130 (2008) 17603. https://doi.org/10.1021/ja808243k
  14. Y. Hwan Hwang, J.-S. Seo, J. Moon Yun, H. Park, S. Yang, S.-H. Ko Park, B.-S. Bae, NPG Asia Mater. 5 (2013)e45. https://doi.org/10.1038/am.2013.11
  15. K.H. Lim, J.E. Huh, J. Lee, N.K. Cho, J.W. Park, B.I. Nam, E. Lee, Y.S. Kim, ACS Appl. Mater. Interfaces 9 (2017) 548. https://doi.org/10.1021/acsami.6b11867
  16. P.N. Plassmeyer, G. Mitchson, K.N. Woods, D.C. Johnson, C.J. Page, Chem. Mater. 29 (2017) 2921. https://doi.org/10.1021/acs.chemmater.6b05200
  17. K.H. Lee, J.H. Park, Y.B. Yoo, S.W. Han, S.J. Lee, H.K. Baik, Appl. Phys. Express 8 (2015) 081101. https://doi.org/10.7567/APEX.8.081101
  18. K.H. Lee, S.W. Han, J.H. Park, Y.B. Yoo, S.J. Lee, H.K. Baik, K.M. Song, Jpn. J. Appl. Phys. 55 (2016) 010304. https://doi.org/10.7567/JJAP.55.010304
  19. J.S. Seo, J.H. Jeon, Y.H. Hwang, H. Park, M. Ryu, S.H.K. Park, B.S. Bae, Sci. Rep. 3 (2013) 3.
  20. H. Faber, Y.H. Lin, S.R. Thomas, K. Zhao, N. Pliatsikas, M.A. McLachlan, A. Amassian, P.A. Patsalas, T.D. Anthopoulos, ACS Appl. Mater. Interfaces 7 (2015) 782. https://doi.org/10.1021/am5072139
  21. Y.S. Rim, H. Chen, T.-B. Song, S.-H. Bae, Y. Yang, Chem. Mater. 27 (2015) 5808. https://doi.org/10.1021/acs.chemmater.5b02505
  22. A. Liu, G. Liu, H. Zhu, B. Shin, E. Fortunato, R. Martins, F. Shan, RSC Adv. 5 (2015) 86606. https://doi.org/10.1039/C5RA15370K
  23. W. Xu, H. Cao, L. Liang, J.B. Xu, ACS Appl. Mater. Interfaces 7 (2015) 14720. https://doi.org/10.1021/acsami.5b02451
  24. G. Liu, A. Liu, H. Zhu, B. Shin, E. Fortunato, R. Martins, Y. Wang, F. Shan, Adv. Funct. Mater. 25 (2015) 2564. https://doi.org/10.1002/adfm.201500056
  25. A. Liu, G.X. Liu, H.H. Zhu, H.J. Song, B. Shin, E. Fortunato, R. Martins, F.K. Shan, Adv. Funct. Mater. 25 (2015) 7180. https://doi.org/10.1002/adfm.201502612
  26. F.-C. Chiu, Adv. Mater. Sci. Eng. 2014 (2014) 1.
  27. A. Hasegawa, T. Tanno, S. Nogami, M. Satou, J. Nucl. Mater. 417 (2011) 491. https://doi.org/10.1016/j.jnucmat.2010.12.114
  28. R.A. Alberty, J. Biol. Chem. 244 (1969) 3290.
  29. T. Urabe, T. Tsugoshi, M. Tanaka, J. Mass Spectrom. 44 (2009) 193. https://doi.org/10.1002/jms.1485
  30. A. Sarpola, V. Hietapelto, J. Jalonen, J. Jokela, R.S. Laitinen, J. Ramo, J. Mass Spectrom. 39 (2004) 1209. https://doi.org/10.1002/jms.722
  31. B. Brauer, D.R.T. Zahn, T. Ruffer, G. Salvan, Chem. Phys. Lett. 432 (2006) 226. https://doi.org/10.1016/j.cplett.2006.10.070
  32. N. Haque, R.F. Cochrane, A.M. Mullis, Crystals 7 (2017).
  33. H.D. Keith, F.J. Padden, J. Appl. Phys. 34 (1963) 2409. https://doi.org/10.1063/1.1702757
  34. A.G. Shtukenberg, Y.O. Punin, E. Gunn, B. Kahr, Chem. Rev. 112 (2012) 1805. https://doi.org/10.1021/cr200297f
  35. E. Gunn, Small Molecule Banded Spherulites (Ph.D. Dissertation), University of Washington Seattle, Washington, USA, 2009.
  36. R.R. Hegde, J.E. Spruiell, G.S. Bhat, Polym. Int. 63 (2014) 1112. https://doi.org/10.1002/pi.4623
  37. Y. Wang, X.F. Liu, J. Peng, F. Qiu, RSC Adv. 5 (2015) 107970. https://doi.org/10.1039/C5RA24266E
  38. L.G.M. Beekmans, G.J. Vancso, Polymer 41 (2000) 8975. https://doi.org/10.1016/S0032-3861(00)00240-8
  39. M.R. Niazi, R. Li, Qiang Li, A.R. Kirmani, M. Abdelsamie, Q. Wang, W. Pan, M.M. Payne, J.E. Anthony, D.M. Smilgies, S.T. Thoroddsen, E.P. Giannelis, A. Amassian, Nat. Commun. 6 (2015) 8598. https://doi.org/10.1038/ncomms9598
  40. E. Woo, G. Lugito, Polymers 8 (2016) 329. https://doi.org/10.3390/polym8090329
  41. C. Zhang, L. Lu, W. Li, L. Li, C. Zhou, Polym. Bull. 73 (2016) 2961. https://doi.org/10.1007/s00289-016-1634-2
  42. V. Viswanath, S. Maity, J.R. Bochinski, L.I. Clarke, R.E. Gorga, Macromolecules 46 (2013) 8596. https://doi.org/10.1021/ma401855v
  43. M. Egginger, S. Bauer, R. Schwodiauer, H. Neugebauer, N.S. Sariciftci, Monatsh. Chem. Chem. Mon. 140 (2009) 735. https://doi.org/10.1007/s00706-009-0149-z

Cited by

  1. Solution-processed metal-oxide thin-film transistors: a review of recent developments vol.30, pp.31, 2018, https://doi.org/10.1088/1361-6528/ab1860
  2. Investigation of Vertical Current Phenomena in the Insulator/Oxide Semiconductor Heterojunction Using XPS Analysis and an Atmospheric-Pressure Plasma Treatment System vol.1, pp.8, 2019, https://doi.org/10.1021/acsaelm.9b00384
  3. Atmospheric-pressure plasma treatment toward high-quality solution-processed aluminum oxide gate dielectric films in thin-film transistors vol.30, pp.49, 2019, https://doi.org/10.1088/1361-6528/ab4073
  4. Recent Progress in Solution‐Based Metal Oxide Resistive Switching Devices vol.33, pp.7, 2021, https://doi.org/10.1002/adma.202004328
  5. Chemically Tunable Organic Dielectric Layer on an Oxide TFT: Poly(p-xylylene) Derivatives vol.13, pp.36, 2018, https://doi.org/10.1021/acsami.1c13865
  6. Solution-processed metal oxide dielectric films: Progress and outlook vol.9, pp.12, 2018, https://doi.org/10.1063/5.0066014