DOI QR코드

DOI QR Code

Thermoelectric Properties of P-type (Ce1-zYbz)0.8Fe4-xCoxSb12 Skutterudites

  • Choi, Deok-Yeong (Department of Material Science and Engineering, Korea National University of Transportation) ;
  • Cha, Ye-Eun (Department of Material Science and Engineering, Korea National University of Transportation) ;
  • Kim, Il-Ho (Department of Material Science and Engineering, Korea National University of Transportation)
  • Received : 2018.08.31
  • Accepted : 2018.09.20
  • Published : 2018.11.05

Abstract

P-type Ce/Yb-filled skutterudites were synthesized, and their charge transport and thermoelectric properties were investigated with partial double filling and charge compensation. In the case of $(Ce_{1-z}Yb_z)_{0.8}Fe_4Sb_{12}$ without Co substitution, the marcasite ($FeSb_2$) phase formed alongside the skutterudite phase, but the generation of the marcasite phase was inhibited by increasing Co concentration. The electrical conductivity decreased with increasing temperature, exhibiting degenerate semiconductor behavior. The Hall and Seebeck coefficients were positive, which confirmed that the specimens were p-type semiconductors with holes as the major carriers. The carrier concentration decreased as the concentration of Ce and Co increased, which led to decreased electrical conductivity and increased Seebeck coefficient. The thermal conductivity decreased due to a reduction in electronic thermal conductivity via Co substitution, and due to decreased lattice thermal conductivity via double filling of Ce and Yb. $(Ce_{0.25}Yb_{0.75})_{0.8}Fe_{3.5}Co_{0.5}Sb_{12}$ exhibited the greatest dimensionless figure of merit (ZT = 0.66 at 823 K).

Keywords

References

  1. A. L. Jasper, D. Kaczorowski, P. Rogl, J. Bogner, M. Reissner, W. Steiner, G. Wiesinger, and C. Godart, Sol. Stat. Comm. 109, 395 (1999). https://doi.org/10.1016/S0038-1098(98)00556-0
  2. D. M. Rowe, Thermoelectric Handbook: Macro to Nano, chap. 1, Boca Raton, FL, CRC Press (2006).
  3. J. W. Kaiser and W. Jeitschko, J. Alloy. Compd. 291, 66 (1999). https://doi.org/10.1016/S0925-8388(99)00252-2
  4. J. Yu, W. Y. Zhao, P. Wei, D. G. Tang, and Q. J. Zhang, J. Electron. Mater. 41, 1414 (2012). https://doi.org/10.1007/s11664-012-2029-2
  5. K. T. Wojcoechowski, Mater. Res. Bull. 37, 2023 (2002). https://doi.org/10.1016/S0025-5408(01)00758-9
  6. D. Mandrus, A. Migliori, T. W. Darling, M. FM Hundley, E. J. Peterson, and J. D. Thompson, Phys. Rev. B 52, 4926 (1995). https://doi.org/10.1103/PhysRevB.52.4926
  7. Z. Chen, H. Yang, R. Liu, L. Xi, W. Zhang, and H. Yang, J. Electron. Mater. 42, 2492 (2013). https://doi.org/10.1007/s11664-013-2594-z
  8. J. Leszczynski, V. D. Ros, B. Lenoir, A. Dauscher, C. Candolfi, P. Masschelein, J. Hejtmanek, K. Kutorasinski, J. Tobola, R. I. Smith, C. Stiewe, and E. M ller, J. Phys. D 46, 495106 (2013). https://doi.org/10.1088/0022-3727/46/49/495106
  9. S. Ballikaya and C. Uher, J. Alloy. Compd. 585, 168 (2014). https://doi.org/10.1016/j.jallcom.2013.09.124
  10. G. Rogl, A. Grytsiv, L. Yubuta, S. Puchegger, E. Bauer, C. Raju, R. C. Mallik, and P. Rogl, Acta Mater. 95, 201 (2015). https://doi.org/10.1016/j.actamat.2015.05.024
  11. Y. E. Cha and I. H. Kim, Korean J. Met. Mater. 56, 465 (2018). https://doi.org/10.3365/KJMM.2018.56.6.465
  12. R. D. Shammon, Acta Crystallogr. A 32, 751 (1976). https://doi.org/10.1107/S0567739476001551
  13. D. B rardan, E. Alleno, C. Godart, O. Rouleau, and J. Rodriguez-Carvajal, Mater. Res. Bull. 40, 537 (2005). https://doi.org/10.1016/j.materresbull.2004.10.023
  14. K. Yang, H. Cheng, H. H. Hng, J. Ma, J. L. Mi, X. B. Zhao, T. J. Zhu, and Y. B. Zhang, J. Alloy. Compd. 467, 528 (2009). https://doi.org/10.1016/j.jallcom.2007.12.065
  15. T. Dahal, Q. Jie, W. Liu, K. Dahal, C. Guo, Y. Lan, and Z. Ren, J. Alloy. Compd. 623, 104 (2015). https://doi.org/10.1016/j.jallcom.2014.10.102
  16. R. H. Liu, J. O. Yang, X. H. Chen, X. Shi, L. D. Chen, and C. Uher, J. Intermet. 19, 1747 (2011). https://doi.org/10.1016/j.intermet.2011.06.010
  17. S. Ballikaya, N. Uzar, S, Yildirim, H. Chi, X. L. Su, G. J. Tan, X. F. Tang, and C. Uher, J. Electron. Mater. 42, 1622 (2013). https://doi.org/10.1007/s11664-012-2357-2
  18. G. S. Joo, D. K. Shin, and I. H. Kim, J. Electron. Mater. 45, 1251 (2016). https://doi.org/10.1007/s11664-015-3984-1