DOI QR코드

DOI QR Code

Formation and Characterization of Casein Phosphopeptide/Chitosan Oligosaccharide NanoComplex

케이신 포스포펩티드/키토올리고당 나노 복합체 형성과 특성 연구

  • Baek, Yun-Seo (Department of Animal Bioscience and Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Ha, Ho-Kyung (Department of Animal Science and Technology, Sunchon National University) ;
  • Lee, Ji-Hong (Department of Animal Bioscience and Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Lee, Mee-Ryung (Department of Food and Nutrition, Daegu University) ;
  • Lee, Won-Jae (Department of Animal Bioscience and Institute of Agriculture and Life Science, Gyeongsang National University)
  • 백윤서 (경상대학교 동물생명과학과(농업생명과학연구원)) ;
  • 하호경 (순천대학교 동물자원과학과) ;
  • 이지홍 (경상대학교 동물생명과학과(농업생명과학연구원)) ;
  • 이미령 (대구대학교 식품영양학과) ;
  • 이원재 (경상대학교 동물생명과학과(농업생명과학연구원))
  • Received : 2018.09.17
  • Accepted : 2018.09.18
  • Published : 2018.09.30

Abstract

The objectives of this study were to manufacture casein phosphopeptide (CPP)/chitosan oligosaccharide (CSO) nanocomplexes and to investigate the impacts of manufacturing variables, such as CPP concentration and pH, on their morphological and physicochemical characteristics. Transmission electron microscopy (TEM) and particle size analysis were used to assess the morphological and physicochemical properties of the CPP/CSO nano-complexes, respectively. Based on the images obtained by TEM, the spherical shapes of the CPP/CSO nanocomplexes ranged from 50 to 150 nm. As the concentration of CPP was increased and the pH was decreased, the average particle size of the nanocomplexes significantly (p<0.05) increased. The CPP/CSO nanocomplexes had a highly uniform distribution with a polydispersity index value of less than 0.3. In addition, they had a negative surface charge with a zeta-potential value between -17 and -26 mV. The CPP/CSO nanocomplexes showed good stability during the freeze-drying process. In conclusion, CPP/CSO nanocomplexes were successfully manufactured, and the CPP concentration and pH were found to be key factors that affected their morphological and physicochemical properties.

본 연구에서는 CPP와 CSO를 사용하여 약 187~282 nm 크기의 균일한 구형의 나노 복합체를 성공적으로 제조하였다. 나노 복합체는 제조 공정 요인인 CPP 농도와 pH 조절을 통해 입자 크기, 다분산 지수, 그리고 표면 전하와 같은 나노 복합체의 물리화학적 특성을 조절할 수 있음을 확인하였다. 또한 CPP/CSO 나노 복합체의 분말화 공정을 통해 분말화 된 나노 복합체의 식품 적용성을 증진시킬 수 있음을 알 수 있었으며, food-grade 물질인 CPP와 CSO를 사용하여 제조한 나노 복합체는 향후 잠재적인 칼슘 전달체로써 식품 산업에 이용될 수 있을 것으로 기대된다.

Keywords

References

  1. Bharathiraja, S., Bui, N. Q., Manivasagan, P., Moorthy, M. S., Mondal, S., Seo, H., Phouc, N. T., Vy Phan, T. T., Kim, H., Lee, K. D. and Oh, J. 2018. Multimodal tumor-homing chitosan oligosaccharide-coated biocompatible palladium nanoparticles for photo-based imaging and therapy. Sci. Rep. 8:500. https://doi.org/10.1038/s41598-017-18966-8
  2. Bhattarai, N., Gunn, J. and Zhang, M. 2010. Chitosan-based hydrogels for controlled, localized drug delivery. Adv. Drug Deliv. Rev. 62:83-99. https://doi.org/10.1016/j.addr.2009.07.019
  3. Cao, Y., Miao, J., Liu, G., Luo, Z., Xia, Z., Liu, F., Yao, M., Cao, X., Sun, S., Lin, Y., Lan, Y. and Xiao, H. 2017. Bioactive peptides isolated from casein phosphopeptides enhance calcium and magnesium uptake in caco-2 cell monolayers. J. Agric. Food Chem. 65:2307-2314. https://doi.org/10.1021/acs.jafc.6b05711
  4. Cilla, A., Lagarda, M. J., Alegria, A., Ancos, B., Cano, M. P., Sanchez-Moreno, C., Plaza, L. and Barbera, R. 2011. Effect of processing and food matrix on calcium and phosphorous bioavailability from milk-based beverages in caco-2 cells. Food Res. Int. 44:3030-3038. https://doi.org/10.1016/j.foodres.2011.07.018
  5. Ferraretto, A., Signorile, A., Gravaghi, C., Fiorilli, A. and Tettamanti, G. 2001. Casein phosphopeptides influence calcium uptake by cultured human intestinal ht-29 tumor cells. J. Nutr. 131:1655-1661. https://doi.org/10.1093/jn/131.6.1655
  6. Ha, H. K., Kim, J. W., Lee, M. R. and Lee, W. J. 2013. Formation and characterization of quercetin-loaded chitosan oligosaccharide/${\beta}$-lactoglobulin nanoparticle. Food Res. Int. 52:82-90. https://doi.org/10.1016/j.foodres.2013.02.021
  7. Ha, H. K., Kim, J. W., Lee, M. R., Jun, W. and Lee, W. J. 2015. Cellular uptake and cytotoxicity of ${\beta}$-lactoglobulin nanoparticles: The effects of particle size and surface charge. Asian-Aust. J. Anim. Sci. 28:420-427. https://doi.org/10.5713/ajas.14.0761
  8. Hu, B., Ting, Y., Zeng, W. and Huang, Q. 2012. Cellular uptake and cytotoxicity of chitosan-caseinophosphopeptides nanocomplexes loaded with epigallocatechin gallate. Carbohyd. Polym. 89:362-370. https://doi.org/10.1016/j.carbpol.2012.03.015
  9. Korea Centers for Disease Control & Prevention(KCDC). 2015-2016. 질병관리본부 https://knhanes.cdc.go.kr/knhanes/sub04/sub04_03.do?classType=7
  10. Lippacher, A., Muller, R. H., and Mader, K. 2001. Preparation of semisolid drug carriers for topical application based on solid lipid nanoparticles. Int. J. Pharm. 214:9-12. https://doi.org/10.1016/S0378-5173(00)00623-2
  11. Ranaldi, G., Marigliano, I., Vespignani, I., Perozzi, G. and Sambuy, Y. 2002. The effect of chitosan and other polycations on tight junction permeability in the human intestinal caco-2 cell line. J. Nutr. Biochem. 13:157-167. https://doi.org/10.1016/S0955-2863(01)00208-X
  12. Sun, N., Wu, H., Du, M., Tang, Yue., Liu, H., Fu, Y. and Zhu, B. 2016. Food protein-derived calcium chelating peptides: A review. Trends. Food Sci. Technol. 58:140-148. https://doi.org/10.1016/j.tifs.2016.10.004

Cited by

  1. 케이신 포스포펩티드/키토올리고당 나노 복합체의 유식품 적용 연구 vol.39, pp.1, 2018, https://doi.org/10.22424/jdsb.2021.39.1.27