DOI QR코드

DOI QR Code

Regulatory T Cells Promote Pancreatic Islet Function and Viability via TGF-β1 in vitro and in vivo

조절 T 세포 유래 TGF-β1에 의한 췌장섬세포의 기능 및 활성 증가

  • Choi, Bongkum (Transplantation Research Center, Clinical Research Institute, Samsung Biomedical Research Institute) ;
  • Kim, Sa-Hyun (Department of Clinical Laboratory Science, Semyung University)
  • Received : 2018.08.09
  • Accepted : 2018.08.15
  • Published : 2018.09.30

Abstract

Regulatory T cells (Treg), known as immune-suppressors, may help modulate the immune response. In this study, we investigated the effect of Treg-derived $TGF-{\beta}1$ on pancreatic islet cell function in vitro and in vivo. One hundred eighty IEQ (islet equivalents) of pancreatic islets, the marginal amount to regulate blood glucose level after syngeneic islet transplantation in mouse type 1 diabetes (T1D) model, were co-cultured with $4{\times}10^6$ Treg cells for 48 hours. The changes in $TGF-{\beta}1$, interleukin-6 (IL-6), and insulin secretion levels were measured and analyzed among the Treg-only group, the islet-only group, and the Treg/islet co-cultured group. In the Treg/islet co-cultured group, IL-6 and insulin secretion levels were increased (P<0.0005, P<0.005) and islet viability was improved (P<0.005) compared with the islet-only group. Furthermore, after transplantation, the co-cultured islets regulated blood glucose levels efficiently in the T1D mouse model. These data suggest that Treg could improve islet functions and viability via the $TGF-{\beta}1$ secretion pathway (P<0.05~0.005), thus the use of Treg in islet transplantation should be explored further.

본 연구에서는 면역 억제 역할을 하는 것으로 알려져 있는 조절 T 세포 (regulatory T cell, Treg)의 새로운 생리학적 기능 대하여 확인해보고자 하였다. 시험관내나 동물실험에서 조절 T 세포가 분비하는 transforming growth factor ${\beta}1$ ($TGF-{\beta}1$)에 의하여 이식 직전까지 췌장섬세포의 생존률을 향상시키면서 동시에 혈당조절 기능이 향상될 수 있을 것이라는 가설이다. 이를 증명하기 위하여 마우스를 이용한 1형 당뇨병 모델을 제작한 뒤, 180 IEQ (islet equivalents)의 췌장섬세포를 동종간 이식하였다. 췌장섬세포는 이식 수술 시행 전까지 48시간 동안 $4{\times}10^6$의 Treg 세포와 함께 배양하여 Treg 유래 $TGF-{\beta}1$에 충분히 노출시킨 뒤 사용하였다. Treg 단독군, 췌장섬세포 단독군 및 Treg/islet 동시 배양군에서 각각 $TGF-{\beta}1$, IL-6 및 인슐린 분비 수준의 변화를 측정하였다. Treg/islet 동시 배양군에서 IL-6와 인슐린 분비는 증가하였고 (P<0.0005, P<0.005), 췌장섬세포 단독군과 비교하여 생존율이 향상되었다(P<0.005). 또한, 이식 후, 동시 배양된 췌장섬세포는 1형 당뇨병 마우스 모델에서 혈당 수치를 보다 효율적으로 조절하였다. 이러한 결과는 Treg 세포가 $TGF-{\beta}1$ 분비를 통하여 췌장섬세포의 기능과 생존력을 향상시킬 수 있음을 시사한다.

Keywords

References

  1. Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA. Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol. 2006;24:99-146. https://doi.org/10.1146/annurev.immunol.24.021605.090737
  2. Letterio JJ, Roberts AB. Regulation of immune responses by TGF-$\beta$. Annu Rev Immunol. 1998;16:137-161. https://doi.org/10.1146/annurev.immunol.16.1.137
  3. Wahl SM. Transforming growth factor $\beta$: the good, the bad, and the ugly. J Exp Med. 1994;180:1587-1590. https://doi.org/10.1084/jem.180.5.1587
  4. Kehrl JH, Wakefield LM, Roberts AB, Jakowlew S, Alvarez-Mon M, Derynck R, et al. Production of transforming growth factor $\beta$ by human T lymphocytes and its potential role in the regulation of T cell growth. J Exp Med. 1986;163:1037-1050. https://doi.org/10.1084/jem.163.5.1037
  5. Chen Y, Kuchroo VK, Inobe J, Hafler DA, Weiner HL. Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science. 1994;265:1237-1240. https://doi.org/10.1126/science.7520605
  6. Weiner HL. Induction and mechanism of action of transforming growth factor-$\beta$-secreting Th3 regulatory cells. Immunol Rev. 2001;182:207-214. https://doi.org/10.1034/j.1600-065X.2001.1820117.x
  7. Nakamura K, Kitani A, Strober W. Cell contact-dependent immunosuppression by CD4+CD25+ regulatory T cells is mediated by cell surface-bound transforming growth factor $\beta$. J Exp Med. 2001;194:629-644. https://doi.org/10.1084/jem.194.5.629
  8. Oida T, Zhang X, Goto M, Hachimura S, Totsuka M, Kaminogawa S, et al. CD4+CD25- Tcells that express latencyassociated peptide on the surface suppress CD4+CD45RBhighinduced colitis by a TGF-$\beta$-dependent mechanism. J Immunol. 2003;170:2516-2522. https://doi.org/10.4049/jimmunol.170.5.2516
  9. Green EA, Gorelik L, McGregor CM, Tran EH, Flavell RA. CD4+CD25+ T regulatory cells control anti-islet CD8+ T cells through TGF-$\beta$ receptor interactions in type 1 diabetes. Proc Natl Acad Sci. 2003;100:10878-10883. https://doi.org/10.1073/pnas.1834400100
  10. Piccirillo CA, Letterio JJ, Thornton AM, McHugh RS, Mamura M, Mizuhara H, et al. CD4+CD25+ regulatory T cells can mediate suppressor function in the absence of transforming growth factor $\beta$1 production and responsiveness. J Exp Med. 2002; 196:237-246. https://doi.org/10.1084/jem.20020590
  11. Powrie F, Carlino J, Leach MW, Mauze S, Coffman RL. A critical role for transforming growth factor-$\beta$ but not interleukin 4 in the suppression of T helper type 1-mediated colitis by CD45RB(low) CD4+ T cells. J Exp Med. 1996;183:2669-2674. https://doi.org/10.1084/jem.183.6.2669
  12. Mamura M, Lee W, Sullivan TJ, Felici A, Sowers AL, Allison JP, Letterio JJ. CD28 disruption exacerbates inflammation in TGF-$\beta$1-/- mice: in vivo suppression by CD4+CD25+ regulatory T cells independent of autocrine TGF-$\beta$1. Blood. 2004; 103:4594-601. https://doi.org/10.1182/blood-2003-08-2897
  13. Fahlen L, Read S, Gorelik L, Hurst SD, Coffman RL, Flavell RA, et al. T cells that cannot respond to TGF-$\beta$ escape control by CD4+CD25+regulatory T cells. J Exp Med. 2005;201:737-746. https://doi.org/10.1084/jem.20040685
  14. Nakamura K, Kitani A, Fuss I, Pedersen A, Harada N, Nawata H, et al. TGF-$\beta$1 plays an important role in the mechanism of CD4+CD25+ regulatory T cell activity in both humans and mice. J Immunol. 2004;172:834-842. https://doi.org/10.4049/jimmunol.172.2.834
  15. Namba K, Kitaichi N, Nishida T, Taylor AW. Induction of regulatory T cells by the immunomodulating cytokines alpha-melanocyte-stimulating hormone and transforming growth factor-beta2. J Leukoc Biol. 2002;72:946-952.
  16. Fantini MC, Becker C, Monteleone G, Pallone F, Galle PR, Neurath MF. Cutting edge: TGF-beta induces a regulatory phenotype in CD4+CD25- T cells through Foxp3 induction and down-regulation of Smad7. J Immunol. 2004;172:5149-5153. https://doi.org/10.4049/jimmunol.172.9.5149
  17. Tonkin DR, Haskins K. Regulatory T cells enter the pancreas during suppression of type 1 diabetes and inhibit effector T cells and macrophages in a TGF-beta-dependent manner. Eur J Immunol. 2009;39:1313-1322. https://doi.org/10.1002/eji.200838916
  18. Tran DQ, Ramsey H, Shevach EM. Induction of FOXP3 expression in naive human CD4+FOXP3 T cells by T-cell receptor stimulation is transforming growth factor-beta dependent but does not confer a regulatory phenotype. Blood. 2007;110: 2983-2990. https://doi.org/10.1182/blood-2007-06-094656
  19. Lin HM, Lee JH, Yadav H, Kamaraju AK, Liu E, Zhigang D, et al. Transforming growth factor-beta/Smad3 signaling regulates insulin gene transcription and pancreatic islet beta-cell function. J Biol Chem. 2009;284:12246-12257. https://doi.org/10.1074/jbc.M805379200
  20. Calderon B, Suri A, Pan XO, Mills JC, Unanue ER. IFN-gamma-dependent regulatory circuits in immune inflammation highlighted in diabetes. J Immunol. 2008;181:6964-6974. https://doi.org/10.4049/jimmunol.181.10.6964
  21. Zang W, Lin M, Kalache S, Zhang N, Kruger B, Waaga-Gasser AM, et al. Inhibition of the alloimmune response through the generation of regulatory T cells by a MHC class II-derived peptide. J Immunol. 2008;181:7499-7506. https://doi.org/10.4049/jimmunol.181.11.7499
  22. Simeone DM, Zhang L, Treutelaar MK, Zhang L, Graziano K, Logsdon CD, et al. Islet hypertrophy following pancreatic disruption of Smad4 signaling. Am J Physiol Endocrinol Metab. 2006;291:E1305-1316. https://doi.org/10.1152/ajpendo.00561.2005
  23. Sabek OM, Fraga DW, Henry J, Gaber LW, Kotb M, Gaber AO, et al. Expression of transforming growth factor $\beta$ by human islets: impact on islet viability and function. Cell Transplantation. 2007;16:775-785. https://doi.org/10.3727/000000007783465217
  24. Chao KC, Chao KF, Chen CF, Liu SH. A novel human stem cell coculture system that maintains the survival and function of culture islet-like cell clusters. Cell Transplant. 2008;17: 657-664. https://doi.org/10.3727/096368908786092801
  25. Choi SE, Choi KM, Yoon IH, Shin JY, Kim JS, Park WY, et al. IL-6 protects pancreatic islet beta cells from pro-inflammatory cytokines-induced cell death and functional impairment in vitro and in vivo. Transpl Immunol. 2004;13:43-53. https://doi.org/10.1016/j.trim.2004.04.001
  26. Kamimura D, Ishihara K, Hirano T. IL-6 signal transduction and its physiological roles: the signal orchestration model. Rev Physiol Biochem Pharmacol. 2003;149:1-38.
  27. Birkey Reffey S, Wurthner JU, Parks WT. X-linked inhibitor of apoptosis protein functions as a cofactor in transforming growth factor-$\beta$ signaling. J Biol Chem. 2001;276:26542-26549. https://doi.org/10.1074/jbc.M100331200
  28. Sayo Y, Hosokawa H, Imachi H, Murao K, Sato M, Wong NC, et al. Transforming growth factor $\beta$ induction of insulin gene expression in mediated by pancreatic and duodenal homeobox gene-1 in rat insulinoma cells. Eur J Biochem. 2000;267: 971-978. https://doi.org/10.1046/j.1432-1327.2000.01080.x

Cited by

  1. Crosstalk Between Immunity System Cells and Pancreas. Transformation of Stem Cells Used in the 3D Bioprinting Process as a Personalized Treatment Method for Type 1 Diabetes vol.68, pp.2, 2020, https://doi.org/10.1007/s00005-020-00578-2
  2. Tregs and Mixed Chimerism as Approaches for Tolerance Induction in Islet Transplantation vol.11, pp.None, 2021, https://doi.org/10.3389/fimmu.2020.612737
  3. Oestrogen receptor α in T cells controls the T cell immune profile and glucose metabolism in mouse models of gestational diabetes mellitus vol.64, pp.7, 2018, https://doi.org/10.1007/s00125-021-05447-x