DOI QR코드

DOI QR Code

A Fast Computation Method of Far Field Interactions in CBFM for Electromagnetic Analysis of Large Structures

임의 대형구조 전자기 해석을 위한 CBFM의 빠른 원거리 상호 작용 계산 알고리즘

  • Park, Chan-Sun (Department of Electric and Electronic Engineering, Yonsei University) ;
  • Hong, Ic-Pyo (Department of Information & Communication Engineering, Kongju National University) ;
  • Kwon, Obum (Agency for Defense Development) ;
  • Kim, Yoon-Jae (Agency for Defense Development) ;
  • Yook, Jong-Gwan (Department of Electric and Electronic Engineering, Yonsei University)
  • Received : 2018.06.07
  • Accepted : 2018.08.28
  • Published : 2018.09.30

Abstract

The characteristic basis function method, or CFBM, is one of the representative electromagnetic methods widely used today. In this paper, we propose an accelerating algorithm for the far field interaction calculation of CBFM, to efficiently analyze the electromagnetic characteristics of arbitrarily large structures. To effectively analyze the electromagnetic characteristics of a large structure, it is essential to shorten the computation time. In the CBFM analysis method, the complexity can be greatly reduced by using approximations created via the multipole expansion method. The new algorithm proposed in this paper is applied to the computation of radar cross sections of conductor spheres and fighter aircraft, and it is confirmed that calculation time is reduced by 34 % and 74 %, respectively, without loss of accuracy compared with existing CBFM.

본 논문에서는 임의의 대형구조의 전자기 특성을 효율적으로 해석하기 위해 대표적인 전자기 수치해석 기법의 하나인 모멘트법 기반 직접풀이법 중 CBFM의 원거리 상호작용 계산의 가속화 알고리즘을 제안하였다. 대형구조의 전자기 특성해석을 위해서는 계산시간의 단축이 필수적이며, CBFM 해석법에서 원거리 블록 간의 상호작용을 다중극전개방법을 사용한 근사화를 통해 복잡도를 크게 감소시킨 수식을 도출하였다. 본 논문에서 제안된 새로운 알고리즘을 도체구와 전투기의 레이다 단면적 계산에 적용하여 기존의 CBFM과 비교하여 정확도 손실 없이 계산시간이 각각 34 %, 74 % 단축되어 대형구조 문제해석에 효율적이라는 것을 확인하였다.

Keywords

References

  1. R. F. Harrington, Field Computation by Moment Methods, New York, MacMillan, 1968.
  2. R. Coifman, V. Rokhlin, and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Antennas and Propagation Magazine, vol. 35, no. 3, pp. 7-12, Jun. 1993. https://doi.org/10.1109/74.250128
  3. J. M. Song, C. C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Transactions on Antennas and Propagation, vol. 45, no. 10, pp. 1488-1493, Oct. 1997. https://doi.org/10.1109/8.633855
  4. E. Bleszynski, M. Bleszynski, and T. Jaroszewicz, "AIM: Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems," Radio Science, vol. 31, no. 5, pp. 1225-1251, Sep.-Oct. 1996. https://doi.org/10.1029/96RS02504
  5. V. Prakash, R. Mittra, "Characteristic basis function method: A new technique for efficient solution of method of moments matrix equation," Microwave Optical Technology Letters, vol. 36, no. 2, pp. 95-100, Jan. 2003. https://doi.org/10.1002/mop.10685
  6. R. Maaskant, R. Mittra, and A. Tijhuis, "Fast analysis of large antenna arrays using the characteristic basis function method and the adaptive cross approximation algorithm," IEEE Transactions on Antennas and Propagation, vol. 56, no. 11, pp. 3440-3451, Nov. 2008. https://doi.org/10.1109/TAP.2008.2005471
  7. J. M. Song, W. C. Chew, "Error analysis for the truncation of multipole expansion of vector Green's function," in IEEE Antennas and Propagation Society International Symposium. 1999 Digest. Held in Conjunction with: USNC/URSI National Radio Science Meeting, Orlando, FL, 1999, vol. 1, pp. 628-631.