DOI QR코드

DOI QR Code

Bending of a cracked functionally graded nanobeam

  • Received : 2017.03.29
  • Accepted : 2018.07.17
  • Published : 2018.09.25

Abstract

In this study, static bending of an edge cracked cantilever nanobeam composed of functionally graded material (FGM) subjected to transversal point load at the free end of the beam is investigated based on modified couple stress theory. Material properties of the beam change in the height direction according to exponential distributions. The cracked nanobeam is modelled using a proper modification of the classical cracked-beam theory consisting of two sub-nanobeams connected through a massless elastic rotational spring. The inclusion of an additional material parameter enables the new beam model to capture the size effect. The new non-classical beam model reduces to the classical beam model when the length scale parameter is set to zero. The considered problem is investigated within the Euler-Bernoulli beam theory by using finite element method. In order to establish the accuracy of the present formulation and results, the deflections are obtained, and compared with the published results available in the literature. Good agreement is observed. In the numerical study, the static deflections of the edge cracked FGM nanobeams are calculated and discussed for different crack positions, different lengths of the beam, different length scale parameter, different crack depths, and different material distributions. Also, the difference between the classical beam theory and modified couple stress theory is investigated for static bending of edge cracked FGM nanobeams. It is believed that the tabulated results will be a reference with which other researchers can compare their results.

Keywords

References

  1. Aissani, K., Bouiadjra, M.B., Ahouel, M. and Tounsi, A. (2015), "A new nonlocal hyperbolic shear deformation theory for nanobeams embedded in an elastic medium", Struct. Eng. Mech., Int. J., 55(4), 743-763. https://doi.org/10.12989/sem.2015.55.4.743
  2. Akbas, S.D. (2016a), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., Int. J., 59(3), 579-599. https://doi.org/10.12989/sem.2016.59.3.579
  3. Akbas, S.D. (2016b), "Forced Vibration Analysis of Viscoelastic Nanobeams Embedded in an Elastic Medium", Smart Struct. Syst., Int. J., 18(6), 1125-1143. https://doi.org/10.12989/sss.2016.18.6.1125
  4. Akbas, S.D. (2016c), "Static Analysis of a Nano Plate by using Generalized Differantial Quadrature Method", Int. J. Eng. Appl. Sci., 8(2), (Special Issue: Nanomechanics), 30-39.
  5. Akbas, S.D. (2017a), "Forced vibration analysis of functionally graded nanobeams", Int. J. Appl. Mech., 9(7), 1750100. https://doi.org/10.1142/S1758825117501009
  6. Akbas, S.D. (2017b), "Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory", Int. J. Struct. Stabil. Dyn., 17(3), 1750033. DOI: http://dx.doi.org/10.1142/S021945541750033X
  7. Akbas, S.D. (2018), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., Int. J., 6(1), 39-55.
  8. Akgoz, B. and Civalek, O. (2012), "Analysis of microtubules based on strain gradient elasticity and modified couple stress theories", Adv. Vib. Eng., 11(4), 385-400.
  9. Akgoz, B. and Civalek, O. (2013), "Buckling analysis of linearly tapered micro-Columns based on strain gradient elasticity", Struct. Eng. Mech., Int. J., 48(2), 195-205. https://doi.org/10.12989/sem.2013.48.2.195
  10. Akgoz, B. and Civalek, O. (2014), "Thermo-mechanical buckling behavior of functionally graded microbeams embedded in elastic medium", Int. J. Eng. Sci., 85, 90-104. https://doi.org/10.1016/j.ijengsci.2014.08.011
  11. Akgoz, B. and Civalek, O. (2015a), "Bending analysis of FG microbeams resting on Winkler elastic foundation via strain gradient elasticity", Compos. Struct., 134, 294-301. https://doi.org/10.1016/j.compstruct.2015.08.095
  12. Akgoz, B. and Civalek, O. (2015b), "A novel microstructure-dependent shear deformable beam model", Int. J. Mech. Sci., 99, 10-20. https://doi.org/10.1016/j.ijmecsci.2015.05.003
  13. Akgoz, B. and Civalek, O. (2016), "Bending analysis of embedded carbon nanotubes resting on an elastic foundation using strain gradient theory", Acta Astronautica, 119, 1-12. https://doi.org/10.1016/j.actaastro.2015.10.021
  14. Ansari, R., Gholami, R. and Sahmani, S. (2011), "Free vibration analysis of size-dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory", Compos. Struct., 94(1), 2011, 221-228. https://doi.org/10.1016/j.compstruct.2011.06.024
  15. Ansari, R., Gholami, R. and Darabi, M.A. (2012), "A nonlinear Timoshenko beam formulation based on strain gradient theory", J. Mech. Mater. Struct., 7(2), 95-211.
  16. Ansari, R., Gholami, R., Faghih Shojaei, M., Mohammadi, V. and Sahmani, S. (2013a), "Size-dependent bending, buckling and free vibration of functionally graded Timoshenko microbeams based on the most general strain gradient theory", Compos. Struct., 100, 385-397. https://doi.org/10.1016/j.compstruct.2012.12.048
  17. Ansari, R., Gholami, R. and Sahmani, S. (2013b), "Size-dependent vibration of functionally graded curved microbeams based on the modified strain gradient elasticity theory", Arch. Appl. Mech., 83(10), 1439-1449. https://doi.org/10.1007/s00419-013-0756-3
  18. Ansari, R., Faghih Shojaei, M., Gholami, R., Mohammadi, V. and Darabi, M.A. (2013c), "Thermal postbuckling behavior of size-dependent functionally graded Timoshenko microbeams", Int. J. Non-Linear Mech., 50, 127-135. https://doi.org/10.1016/j.ijnonlinmec.2012.10.010
  19. Ansari, R., Gholami, R., Faghih Shojaei, M., Mohammadi, V. and Sahmani, S. (2013d), "Buckling of FGM Timoshenko microbeams under in-plane thermal loading based on the modified strain gradient theory", Int. J. Multiscale Computat. Eng., 11(4), 389-405. https://doi.org/10.1615/IntJMultCompEng.2013006064
  20. Ansari, R., Faghih Shojaei, M., Mohammadi, V., Gholami, R. and Rouhi, H. (2014a), "Nonlinear vibration analysis of microscale functionally graded Timoshenko beams using the most general form of strain gradient elasticity", J. Mech., 30(2), 161-172. https://doi.org/10.1017/jmech.2013.65
  21. Ansari, R., Gholami, R. and Sahmani, S. (2014b), "Free vibration of size-dependent functionally graded microbeams based on the strain gradient Reddy beam theory", Int. J. Computat. Methods Eng. Sci. Mech., 15(5), 401-412. https://doi.org/10.1080/15502287.2014.915249
  22. Ansari, R., Ashrafi, M.A. and Arjangpay, A. (2015), "An exact solution for vibrations of postbuckled microscale beams based on the modified couple stress theory", Appl. Math. Model., 39(10-11), 3050-3062. https://doi.org/10.1016/j.apm.2014.11.029
  23. Asghari, M., Ahmadian, M.T., Kahrobaiyan, M.H. and Rahaeifard, M. (2010), "On the size dependent behavior of functionally graded micro-beams", Mater. Des., 31(5), 2324-3249. https://doi.org/10.1016/j.matdes.2009.12.006
  24. Berrabah, H.M., Tounsi, A., Semmah, A. and Adda, B. (2013), "Comparison of various refined nonlocal beam theories for bending, vibration and buckling analysis of nanobeams", Struct. Eng. Mech., Int. J., 48(3), 351-365. https://doi.org/10.12989/sem.2013.48.3.351
  25. Broek, D. (1986), Elementary Engineering Fracture Mechanics, Martinus Nijhoff Publishers, Dordrecht, Netherlands.
  26. Dai, H.L., Wang, Y.K. and Wang, L. (2015), "Nonlinear dynamics of cantilevered microbeams based on modified couple stress theory", Int. J. Eng. Sci., 94,103-112. https://doi.org/10.1016/j.ijengsci.2015.05.007
  27. Daneshmehr, A.R., Abadi, M.M. and Rajabpoor, A. (2013), "Thermal effect on static bending, vibration and buckling of reddy beam based on modified couple stress theory", Appl. Mech. Mater., 332, 331-338. https://doi.org/10.4028/www.scientific.net/AMM.332.331
  28. Darijani, H. and Mohammadabadi, H. (2014), "A new deformation beam theory for static and dynamic analysis of microbeams", Int. J. Mech. Sci., 89, 31-39. https://doi.org/10.1016/j.ijmecsci.2014.08.019
  29. Ebrahimi, F. and Barati, M.R. (2016a), "An exact solution for buckling analysis of embedded piezoelectromagnetically actuated nanoscale beams", Adv. Nano Res., Int. J., 4(2), 65-84. https://doi.org/10.12989/anr.2016.4.2.065
  30. Ebrahimi, F. and Barati, M.R. (2016b), "Analytical solution for nonlocal buckling characteristics of higherorder inhomogeneous nanosize beams embedded in elastic medium", Adv. Nano Res., Int. J., 4(3), 229-249.
  31. Ehyaei, J., Ebrahimi, F. and Salari, E. (2016), "Nonlocal vibration analysis of FG nano beams with different boundary conditions", Adv. Nano Res., Int. J., 4(2), 85-111.
  32. Eltaher, M.A., Khater, M.E., Park, S., Abdel-Rahman, E. and Yavuz, M. (2016), "On the static stability of nonlocal nanobeams using higher-order beam theories", Adv. Nano Res., Int. J., 4(1), 51-64.
  33. Erdogan, F. and Wu, B.H. (1997), "The Surface Crack Problem for a Plate with Functionally Graded Properties", J. Appl. Mech., 64(3), 448-456.
  34. Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
  35. Fang, T.-H. and Chang, W.-J. (2003), "Sensitivity analysis of scanning near-field optical microscope probe", Optics Laser Technol., 35(4), 267-271. https://doi.org/10.1016/S0030-3992(03)00004-5
  36. Fang, T.-H., Chang, W.-J. and Liao, S.-C. (2003), "Simulated nanojet ejection process by spreading droplets on a solid surface", J. Phys.: Condensed Matter, 15(49), 8263-8271. https://doi.org/10.1088/0953-8984/15/49/005
  37. Farokhi, H. and Ghayesh, M.H. (2015), "Thermo-mechanical dynamics of perfect and imperfect Timoshenko microbeams", Int. J. Eng. Sci., 91, 12-33. https://doi.org/10.1016/j.ijengsci.2015.02.005
  38. Fleck, N.A. and Hutchinson, J.W. (1993), "A phenomenological theory for strain gradient effects in plasticity", J. Mech. Phys. Solids, 41(12), 1825-1857. https://doi.org/10.1016/0022-5096(93)90072-N
  39. Fu, Y., Du, H. and Zhang, S. (2003), "Functionally graded TiN/TiNi shape memory alloy films", Mater. Lett., 57(20), 2995-2999. https://doi.org/10.1016/S0167-577X(02)01419-2
  40. Ghayesh, M.H., Amabili, M. and Farokhi, H. (2013), "Three-dimensional nonlinear size-dependent behaviour of Timoshenko microbeams", Int. J. Eng. Sci., 71, 1-14. https://doi.org/10.1016/j.ijengsci.2013.04.003
  41. Gurses, M., Akgoz, B. and Civalek, O. (2012), "Annular sector plates using the nonlocal continuum theory via eight-node discrete singular convolution transformation", Appl. Math. Computat., 219(6), 3226-3240. https://doi.org/10.1016/j.amc.2012.09.062
  42. Hasanyan, D.J., Batra, R.C. and Harutyunyan, S. (2008), "Pull-in instabilities in functionally graded microthermoelectromechanical systems", J. Therm. Stresses, 31(10), 1006-1021. https://doi.org/10.1080/01495730802250714
  43. Hasheminejad, B.S.M., Gheshlaghi, B., Mirzaei, Y. and Abbasion, S. (2011), "Free transverse vibrations of cracked nanobeams with surface effects", Thin. Solid Films, 519(8), 2477-2482. https://doi.org/10.1016/j.tsf.2010.12.143
  44. Hosseini-Hashemi, S., Fakher, M., Nazemnezhad, R. and Sotoude Hag Highi, M.H. (2014), "Dynamic behavior of thin and thick cracked nanobeams incorporating surface effects", Compos. Part B: Eng., 61, 66-72. https://doi.org/10.1016/j.compositesb.2014.01.031
  45. Hsu, J.C., Lee, H.L. and Chang, W.J. (2011), "Longitudinal vibration of cracked nanobeams using nonlocal elasticity theory", Current Appl. Phys., 11(6), 1384-1388. https://doi.org/10.1016/j.cap.2011.04.026
  46. Kahrobaiyan, M.H., Asghari, M., Rahaeifard, M. and Ahmadian, M.T. (2010), "Investigation of the size dependent dynamic characteristics of atomic force microscope microcantilevers based on the modified couple stress theory", Int. J. Eng. Sci., 48(12), 1985-1994. https://doi.org/10.1016/j.ijengsci.2010.06.003
  47. Ke, L.-L., Wang, Y.-S. and Wang, Z.-D. (2011), "Thermal effect on free vibration and buckling of sizedependent microbeams", Phys. E: Low-Dimensional Syst. Nanostruct., 43(7), 1387-1393. https://doi.org/10.1016/j.physe.2011.03.009
  48. Kocaturk, T. and Akbas, S.D. (2013), "Wave propagation in a microbeam based on the modified couple stress theory", Struct. Eng. Mech., Int. J., 46(3), 417-431. https://doi.org/10.12989/sem.2013.46.3.417
  49. Kong, S., Zhou, S., Nie, Z. and Wang, K. (2008), "The size-dependent natural frequency of Bernoulli-Euler micro-beams", Int. J. Eng. Sci., 46(5), 427-437. https://doi.org/10.1016/j.ijengsci.2007.10.002
  50. Kong, S.L. (2013), "Size effect on natural frequency of cantilever micro-beams based on a modified couple stress theory", Adv. Mater. Res., 694-697, 221-224. https://doi.org/10.4028/www.scientific.net/AMR.694-697.221
  51. Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X
  52. Liu, Y.P. and Reddy, J.N. (2011), "A nonlocal curved beam model based on a modified couple stress theory", Int. J. Struct. Stabil. Dyn., 11(3), 495-512. DOI: 10.1142/S0219455411004233
  53. Liu, S.-J., Qi, S.-H. and Zhang, W.-M. (2013), "Vibration behavior of a cracked micro-cantilever beam under electrostatic excitation", Zhendong yu Chongji/Journal of Vibration and Shock, 32(17), 41-45.
  54. Loya, J., Lopez-Puente, J., Zaera, R. and Fernandez-Saez, J. (2009), "Free transverse vibrations of cracked nanobeams using a nonlocal elasticity model", J. Appl. Phys., 105(4), 044309. https://doi.org/10.1063/1.3068370
  55. Lu, C.F., Lim, C.W. and Chen, W.Q. (2009), "Size-dependent elastic behavior of FGM ultra-thin films based on generalized refined theory", Int. J. Solids Struct., 46(5), 1176-1185. https://doi.org/10.1016/j.ijsolstr.2008.10.012
  56. Ma, H.M., Gao, X.L. and Reddy, J.N. (2008), "A microstructure-dependent Timoshenko beam model based on a modified couple stress theory", J. Mech. Phys. Solids, 56(12), 3379-3391. https://doi.org/10.1016/j.jmps.2008.09.007
  57. Mindlin, R.D. (1963), "Influence of couple-stresses on stress concentrations", Exp. Mech., 3, 1-7. https://doi.org/10.1007/BF02327219
  58. Mindlin, R.D. and Tiersten, H.F. (1962), "Effects of couple-stresses in linear elasticity", Arch. Ration Mech. Anal., 11(1), 415-448. https://doi.org/10.1007/BF00253946
  59. Mohammadi-Alasti, B., Rezazadeh, G., Borgheei, A.M., Minaei, S. and Habibifar, R. (2011), "On the mechanical behavior of a functionally graded micro-beam subjected to a thermal moment and nonlinear electrostatic pressure", Compos. Struct., 93(6), 1516-1525. https://doi.org/10.1016/j.compstruct.2010.11.013
  60. Nateghi A. and Salamat-Talab, M. (2013), "Thermal effect on size dependent behavior of functionally graded microbeams based on modified couple stress theory", Compos. Struct., 96, 97-110. https://doi.org/10.1016/j.compstruct.2012.08.048
  61. Park, S.K. and Gao, X.L. (2006), "Bernoulli-Euler beam model based on a modified couple stress theory", J. Micromech. Microeng., 16(11), 2355-2359. https://doi.org/10.1088/0960-1317/16/11/015
  62. Pei, J., Tian, F. and Thundat, T. (2004), "Glucose biosensor based on the microcantilever", Anal. Chem., 76(2), 292-297. https://doi.org/10.1021/ac035048k
  63. Rahaeifard, M., Kahrobaiyan, M.H. and Ahmadian, M.T. (2009), "Sensitivity analysis of atomic force microscope cantilever made of functionally graded materials", Proceedings of the 3rd International Conference on Micro- and Nanosystems, San Diego, CA, USA.
  64. Reddy, J.N. (2011), "Microstructure-dependent couple stress theories of functionally graded beams", J. Mech. Phys. Solids, 59(11), 2382-2399. https://doi.org/10.1016/j.jmps.2011.06.008
  65. Rezazadeh, G., Tahmasebi, A. and Zubtsov, M. (2006), "Application of piezoelectric layers in electrostatic MEM actuators: controlling of pull-in voltage", J. Microsyst. Technol., 12(12), 1163-1170. https://doi.org/10.1007/s00542-006-0245-5
  66. Salamat-Talab, M., Nateghi, A. and Torabi, J. (2012), "Static and dynamic analysis of third-order shear deformation FG micro beam based on modified couple stress theory", Int. J. Mech. Sci., 57(1), 63-73. https://doi.org/10.1016/j.ijmecsci.2012.02.004
  67. Sedighi, H.M., Changizian, M. and Noghrehabadi, A. (2014), "Dynamic pull-in instability of geometrically nonlinear actuated micro-beams based on the modified couple stress theory", Latin Am. J. Solids Struct., 11(5), 810-825. https://doi.org/10.1590/S1679-78252014000500005
  68. Senturia, S.D. (1998), "CAD challenges for microsensors, microactuators, and microsystems", Proceeding of IEEE, 86(8), 1611-1626. https://doi.org/10.1109/5.704266
  69. Shaat, M., Akbarzadeh Khorshidi, M., Abdelkefi, A. and Shariati, M. (2016), "Modeling and vibration characteristics of cracked nano-beams made of nanocrystalline materials", Int. J. Mech. Sci., 115-116, 574-585. https://doi.org/10.1016/j.ijmecsci.2016.07.037
  70. Simsek, M. (2010), "Dynamic analysis of an embedded microbeam carrying a moving microparticle based on the modified couple stress theory", Int. J. Eng. Sci., 48(12), 1721-1732. https://doi.org/10.1016/j.ijengsci.2010.09.027
  71. Simsek, M. and Reddy, J.N. (2013a), "Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory", Int. J. Eng. Sci., 64, 37-53. https://doi.org/10.1016/j.ijengsci.2012.12.002
  72. Simsek, M. and Reddy, J.N. (2013b), "A unified higher order beam theory for buckling of a functionally graded microbeam embedded in elastic medium using modified couple stress theory", Compos. Struct., 101, 47-58. https://doi.org/10.1016/j.compstruct.2013.01.017
  73. Simsek, M., Kocatürk, T. and Akbas, S.D. (2013), "Static bending of a functionally graded microscale Timoshenko beam based on the modified couple stress theory", Compos. Struct., 95, 740-747. https://doi.org/10.1016/j.compstruct.2012.08.036
  74. Tang, M., Ni, Q., Wang, L., Luo, Y. and Wang, Y. (2014), "Size-dependent vibration analysis of a microbeam in flow based on modified couple stress theory", Int. J. Eng. Sci., 85, 20-30. https://doi.org/10.1016/j.ijengsci.2014.07.006
  75. Tadi Beni, Y., Jafari, A. and Razavi, H. (2015), "Size Effect on Free Transverse Vibration of Cracked Nanobeams using Couple Stress Theory", Int. J. Eng., 28(2), 296-304.
  76. Tagrara, S.H., Benachour, A., Bouiadjra, M.B. and Tounsi, A. (2015), "On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams", Steel Compos. Struct., Int. J., 19(5), 1259-1277. https://doi.org/10.12989/scs.2015.19.5.1259
  77. Torabi, K. and Nafar Dastgerdi, J. (2012), "An analytical method for free vibration analysis of Timoshenko beam theory applied to cracked nanobeams using a nonlocal elasticity model", Thin. Solid Films, 520(21), 6595-6602. https://doi.org/10.1016/j.tsf.2012.06.063
  78. Toupin, R.A. (1962), "Elastic materials with couple stresses", Arch. Ration Mech. Anal., 11(1), 385-414. https://doi.org/10.1007/BF00253945
  79. Xia, W., Wang, L. and Yin, L. (2010), "Nonlinear non-classical microscale beams: static, bending, postbuckling and free vibration", Int. J. Eng. Sci., 48(12), 2044-2053. https://doi.org/10.1016/j.ijengsci.2010.04.010
  80. Wang, L. (2010), "Size-dependent vibration characteristics of fluid-conveying Microtubes", J. Fluids Struct., 26(4), 675-684. https://doi.org/10.1016/j.jfluidstructs.2010.02.005
  81. Wang, L., Xu, Y.Y. and Ni, Q. (2013), "Size-dependent vibration analysis of three-dimensional cylindrical microbeams based on modified couple stress theory: A unified treatment", Int. J. Eng. Sci., 68, 1-10. https://doi.org/10.1016/j.ijengsci.2013.03.004
  82. Wang, Y.-G., Lin, W.-H., Zhou, C.-L. and Liu, R.-X. (2014), "Thermal postbuckling and free vibration of extensible microscale beams based on modified couple stress theory", J. Mech., 31(1), 37-46.
  83. Witvrouw, A. and Mehta, A. (2005), "The use of functionally graded Ploy-SiGe Layers for MEMS Applications", Mater. Sci. Forum, 492-493, 255-260.
  84. Yang, F., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X
  85. Yu, Z. and Chu, F. (2009), "Identification of crack in functionally graded material beams using the pversion of finite element method", J. Sound Vib., 325(1-2), 69-84. https://doi.org/10.1016/j.jsv.2009.03.010
  86. Zamanzadeh, M., Rezazadeh, G., Jafarsadeghi-Poornaki, I. and Shabani, R. (2013), "Static and dynamic stability modeling of a capacitive FGM micro-beam in presence of temperature changes", Appl. Math. Model., 37(10-11), 6964-6978. https://doi.org/10.1016/j.apm.2013.02.034
  87. Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., Int. J., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693
  88. Zhang, J. and Fu, Y. (2012), "Pull-in analysis of electrically actuated viscoelastic microbeams based on a modified couple stress theory", Meccanica, 47(7), 1649-1658. https://doi.org/10.1007/s11012-012-9545-2
  89. Zook, J.D., Burns, D.W., Guckel, H., Smegowsky, J.J., Englestad, R.L. and Feng, Z. (1992), "Characteristics of polysilicon resonant microbeams", Sensors Actuat., 35(1), 31-59.

Cited by

  1. Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model vol.34, pp.5, 2018, https://doi.org/10.12989/scs.2020.34.5.643
  2. Dynamic analysis of a laminated composite beam under harmonic load vol.9, pp.6, 2020, https://doi.org/10.12989/csm.2020.9.6.563
  3. Physical stability response of a SLGS resting on viscoelastic medium using nonlocal integral first-order theory vol.37, pp.6, 2018, https://doi.org/10.12989/scs.2020.37.6.695
  4. The nano scale buckling properties of isolated protein microtubules based on modified strain gradient theory and a new single variable trigonometric beam theory vol.10, pp.1, 2018, https://doi.org/10.12989/anr.2021.10.1.015
  5. In-plane varying bending force effects on wave dispersion characteristics of single-layered graphene sheets vol.10, pp.2, 2021, https://doi.org/10.12989/anr.2021.10.2.101
  6. Parametric vibration analysis of single-walled carbon nanotubes based on Sanders shell theory vol.10, pp.2, 2021, https://doi.org/10.12989/anr.2021.10.2.165
  7. Static analysis of cutout microstructures incorporating the microstructure and surface effects vol.38, pp.5, 2018, https://doi.org/10.12989/scs.2021.38.5.583
  8. Propagation of waves with nonlocal effects for vibration response of armchair double-walled CNTs vol.11, pp.2, 2018, https://doi.org/10.12989/anr.2021.11.2.183
  9. An investigation of mechanical properties of kidney tissues by using mechanical bidomain model vol.11, pp.2, 2018, https://doi.org/10.12989/anr.2021.11.2.193