References
- Aissani, K., Bouiadjra, M.B., Ahouel, M. and Tounsi, A. (2015), "A new nonlocal hyperbolic shear deformation theory for nanobeams embedded in an elastic medium", Struct. Eng. Mech., Int. J., 55(4), 743-763. https://doi.org/10.12989/sem.2015.55.4.743
- Akbas, S.D. (2016a), "Analytical solutions for static bending of edge cracked micro beams", Struct. Eng. Mech., Int. J., 59(3), 579-599. https://doi.org/10.12989/sem.2016.59.3.579
- Akbas, S.D. (2016b), "Forced Vibration Analysis of Viscoelastic Nanobeams Embedded in an Elastic Medium", Smart Struct. Syst., Int. J., 18(6), 1125-1143. https://doi.org/10.12989/sss.2016.18.6.1125
- Akbas, S.D. (2016c), "Static Analysis of a Nano Plate by using Generalized Differantial Quadrature Method", Int. J. Eng. Appl. Sci., 8(2), (Special Issue: Nanomechanics), 30-39.
- Akbas, S.D. (2017a), "Forced vibration analysis of functionally graded nanobeams", Int. J. Appl. Mech., 9(7), 1750100. https://doi.org/10.1142/S1758825117501009
- Akbas, S.D. (2017b), "Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory", Int. J. Struct. Stabil. Dyn., 17(3), 1750033. DOI: http://dx.doi.org/10.1142/S021945541750033X
- Akbas, S.D. (2018), "Forced vibration analysis of cracked functionally graded microbeams", Adv. Nano Res., Int. J., 6(1), 39-55.
- Akgoz, B. and Civalek, O. (2012), "Analysis of microtubules based on strain gradient elasticity and modified couple stress theories", Adv. Vib. Eng., 11(4), 385-400.
- Akgoz, B. and Civalek, O. (2013), "Buckling analysis of linearly tapered micro-Columns based on strain gradient elasticity", Struct. Eng. Mech., Int. J., 48(2), 195-205. https://doi.org/10.12989/sem.2013.48.2.195
- Akgoz, B. and Civalek, O. (2014), "Thermo-mechanical buckling behavior of functionally graded microbeams embedded in elastic medium", Int. J. Eng. Sci., 85, 90-104. https://doi.org/10.1016/j.ijengsci.2014.08.011
- Akgoz, B. and Civalek, O. (2015a), "Bending analysis of FG microbeams resting on Winkler elastic foundation via strain gradient elasticity", Compos. Struct., 134, 294-301. https://doi.org/10.1016/j.compstruct.2015.08.095
- Akgoz, B. and Civalek, O. (2015b), "A novel microstructure-dependent shear deformable beam model", Int. J. Mech. Sci., 99, 10-20. https://doi.org/10.1016/j.ijmecsci.2015.05.003
- Akgoz, B. and Civalek, O. (2016), "Bending analysis of embedded carbon nanotubes resting on an elastic foundation using strain gradient theory", Acta Astronautica, 119, 1-12. https://doi.org/10.1016/j.actaastro.2015.10.021
- Ansari, R., Gholami, R. and Sahmani, S. (2011), "Free vibration analysis of size-dependent functionally graded microbeams based on the strain gradient Timoshenko beam theory", Compos. Struct., 94(1), 2011, 221-228. https://doi.org/10.1016/j.compstruct.2011.06.024
- Ansari, R., Gholami, R. and Darabi, M.A. (2012), "A nonlinear Timoshenko beam formulation based on strain gradient theory", J. Mech. Mater. Struct., 7(2), 95-211.
- Ansari, R., Gholami, R., Faghih Shojaei, M., Mohammadi, V. and Sahmani, S. (2013a), "Size-dependent bending, buckling and free vibration of functionally graded Timoshenko microbeams based on the most general strain gradient theory", Compos. Struct., 100, 385-397. https://doi.org/10.1016/j.compstruct.2012.12.048
- Ansari, R., Gholami, R. and Sahmani, S. (2013b), "Size-dependent vibration of functionally graded curved microbeams based on the modified strain gradient elasticity theory", Arch. Appl. Mech., 83(10), 1439-1449. https://doi.org/10.1007/s00419-013-0756-3
- Ansari, R., Faghih Shojaei, M., Gholami, R., Mohammadi, V. and Darabi, M.A. (2013c), "Thermal postbuckling behavior of size-dependent functionally graded Timoshenko microbeams", Int. J. Non-Linear Mech., 50, 127-135. https://doi.org/10.1016/j.ijnonlinmec.2012.10.010
- Ansari, R., Gholami, R., Faghih Shojaei, M., Mohammadi, V. and Sahmani, S. (2013d), "Buckling of FGM Timoshenko microbeams under in-plane thermal loading based on the modified strain gradient theory", Int. J. Multiscale Computat. Eng., 11(4), 389-405. https://doi.org/10.1615/IntJMultCompEng.2013006064
- Ansari, R., Faghih Shojaei, M., Mohammadi, V., Gholami, R. and Rouhi, H. (2014a), "Nonlinear vibration analysis of microscale functionally graded Timoshenko beams using the most general form of strain gradient elasticity", J. Mech., 30(2), 161-172. https://doi.org/10.1017/jmech.2013.65
- Ansari, R., Gholami, R. and Sahmani, S. (2014b), "Free vibration of size-dependent functionally graded microbeams based on the strain gradient Reddy beam theory", Int. J. Computat. Methods Eng. Sci. Mech., 15(5), 401-412. https://doi.org/10.1080/15502287.2014.915249
- Ansari, R., Ashrafi, M.A. and Arjangpay, A. (2015), "An exact solution for vibrations of postbuckled microscale beams based on the modified couple stress theory", Appl. Math. Model., 39(10-11), 3050-3062. https://doi.org/10.1016/j.apm.2014.11.029
- Asghari, M., Ahmadian, M.T., Kahrobaiyan, M.H. and Rahaeifard, M. (2010), "On the size dependent behavior of functionally graded micro-beams", Mater. Des., 31(5), 2324-3249. https://doi.org/10.1016/j.matdes.2009.12.006
- Berrabah, H.M., Tounsi, A., Semmah, A. and Adda, B. (2013), "Comparison of various refined nonlocal beam theories for bending, vibration and buckling analysis of nanobeams", Struct. Eng. Mech., Int. J., 48(3), 351-365. https://doi.org/10.12989/sem.2013.48.3.351
- Broek, D. (1986), Elementary Engineering Fracture Mechanics, Martinus Nijhoff Publishers, Dordrecht, Netherlands.
- Dai, H.L., Wang, Y.K. and Wang, L. (2015), "Nonlinear dynamics of cantilevered microbeams based on modified couple stress theory", Int. J. Eng. Sci., 94,103-112. https://doi.org/10.1016/j.ijengsci.2015.05.007
- Daneshmehr, A.R., Abadi, M.M. and Rajabpoor, A. (2013), "Thermal effect on static bending, vibration and buckling of reddy beam based on modified couple stress theory", Appl. Mech. Mater., 332, 331-338. https://doi.org/10.4028/www.scientific.net/AMM.332.331
- Darijani, H. and Mohammadabadi, H. (2014), "A new deformation beam theory for static and dynamic analysis of microbeams", Int. J. Mech. Sci., 89, 31-39. https://doi.org/10.1016/j.ijmecsci.2014.08.019
- Ebrahimi, F. and Barati, M.R. (2016a), "An exact solution for buckling analysis of embedded piezoelectromagnetically actuated nanoscale beams", Adv. Nano Res., Int. J., 4(2), 65-84. https://doi.org/10.12989/anr.2016.4.2.065
- Ebrahimi, F. and Barati, M.R. (2016b), "Analytical solution for nonlocal buckling characteristics of higherorder inhomogeneous nanosize beams embedded in elastic medium", Adv. Nano Res., Int. J., 4(3), 229-249.
- Ehyaei, J., Ebrahimi, F. and Salari, E. (2016), "Nonlocal vibration analysis of FG nano beams with different boundary conditions", Adv. Nano Res., Int. J., 4(2), 85-111.
- Eltaher, M.A., Khater, M.E., Park, S., Abdel-Rahman, E. and Yavuz, M. (2016), "On the static stability of nonlocal nanobeams using higher-order beam theories", Adv. Nano Res., Int. J., 4(1), 51-64.
- Erdogan, F. and Wu, B.H. (1997), "The Surface Crack Problem for a Plate with Functionally Graded Properties", J. Appl. Mech., 64(3), 448-456.
- Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5
- Fang, T.-H. and Chang, W.-J. (2003), "Sensitivity analysis of scanning near-field optical microscope probe", Optics Laser Technol., 35(4), 267-271. https://doi.org/10.1016/S0030-3992(03)00004-5
- Fang, T.-H., Chang, W.-J. and Liao, S.-C. (2003), "Simulated nanojet ejection process by spreading droplets on a solid surface", J. Phys.: Condensed Matter, 15(49), 8263-8271. https://doi.org/10.1088/0953-8984/15/49/005
- Farokhi, H. and Ghayesh, M.H. (2015), "Thermo-mechanical dynamics of perfect and imperfect Timoshenko microbeams", Int. J. Eng. Sci., 91, 12-33. https://doi.org/10.1016/j.ijengsci.2015.02.005
- Fleck, N.A. and Hutchinson, J.W. (1993), "A phenomenological theory for strain gradient effects in plasticity", J. Mech. Phys. Solids, 41(12), 1825-1857. https://doi.org/10.1016/0022-5096(93)90072-N
- Fu, Y., Du, H. and Zhang, S. (2003), "Functionally graded TiN/TiNi shape memory alloy films", Mater. Lett., 57(20), 2995-2999. https://doi.org/10.1016/S0167-577X(02)01419-2
- Ghayesh, M.H., Amabili, M. and Farokhi, H. (2013), "Three-dimensional nonlinear size-dependent behaviour of Timoshenko microbeams", Int. J. Eng. Sci., 71, 1-14. https://doi.org/10.1016/j.ijengsci.2013.04.003
- Gurses, M., Akgoz, B. and Civalek, O. (2012), "Annular sector plates using the nonlocal continuum theory via eight-node discrete singular convolution transformation", Appl. Math. Computat., 219(6), 3226-3240. https://doi.org/10.1016/j.amc.2012.09.062
- Hasanyan, D.J., Batra, R.C. and Harutyunyan, S. (2008), "Pull-in instabilities in functionally graded microthermoelectromechanical systems", J. Therm. Stresses, 31(10), 1006-1021. https://doi.org/10.1080/01495730802250714
- Hasheminejad, B.S.M., Gheshlaghi, B., Mirzaei, Y. and Abbasion, S. (2011), "Free transverse vibrations of cracked nanobeams with surface effects", Thin. Solid Films, 519(8), 2477-2482. https://doi.org/10.1016/j.tsf.2010.12.143
- Hosseini-Hashemi, S., Fakher, M., Nazemnezhad, R. and Sotoude Hag Highi, M.H. (2014), "Dynamic behavior of thin and thick cracked nanobeams incorporating surface effects", Compos. Part B: Eng., 61, 66-72. https://doi.org/10.1016/j.compositesb.2014.01.031
- Hsu, J.C., Lee, H.L. and Chang, W.J. (2011), "Longitudinal vibration of cracked nanobeams using nonlocal elasticity theory", Current Appl. Phys., 11(6), 1384-1388. https://doi.org/10.1016/j.cap.2011.04.026
- Kahrobaiyan, M.H., Asghari, M., Rahaeifard, M. and Ahmadian, M.T. (2010), "Investigation of the size dependent dynamic characteristics of atomic force microscope microcantilevers based on the modified couple stress theory", Int. J. Eng. Sci., 48(12), 1985-1994. https://doi.org/10.1016/j.ijengsci.2010.06.003
- Ke, L.-L., Wang, Y.-S. and Wang, Z.-D. (2011), "Thermal effect on free vibration and buckling of sizedependent microbeams", Phys. E: Low-Dimensional Syst. Nanostruct., 43(7), 1387-1393. https://doi.org/10.1016/j.physe.2011.03.009
- Kocaturk, T. and Akbas, S.D. (2013), "Wave propagation in a microbeam based on the modified couple stress theory", Struct. Eng. Mech., Int. J., 46(3), 417-431. https://doi.org/10.12989/sem.2013.46.3.417
- Kong, S., Zhou, S., Nie, Z. and Wang, K. (2008), "The size-dependent natural frequency of Bernoulli-Euler micro-beams", Int. J. Eng. Sci., 46(5), 427-437. https://doi.org/10.1016/j.ijengsci.2007.10.002
- Kong, S.L. (2013), "Size effect on natural frequency of cantilever micro-beams based on a modified couple stress theory", Adv. Mater. Res., 694-697, 221-224. https://doi.org/10.4028/www.scientific.net/AMR.694-697.221
- Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X
- Liu, Y.P. and Reddy, J.N. (2011), "A nonlocal curved beam model based on a modified couple stress theory", Int. J. Struct. Stabil. Dyn., 11(3), 495-512. DOI: 10.1142/S0219455411004233
- Liu, S.-J., Qi, S.-H. and Zhang, W.-M. (2013), "Vibration behavior of a cracked micro-cantilever beam under electrostatic excitation", Zhendong yu Chongji/Journal of Vibration and Shock, 32(17), 41-45.
- Loya, J., Lopez-Puente, J., Zaera, R. and Fernandez-Saez, J. (2009), "Free transverse vibrations of cracked nanobeams using a nonlocal elasticity model", J. Appl. Phys., 105(4), 044309. https://doi.org/10.1063/1.3068370
- Lu, C.F., Lim, C.W. and Chen, W.Q. (2009), "Size-dependent elastic behavior of FGM ultra-thin films based on generalized refined theory", Int. J. Solids Struct., 46(5), 1176-1185. https://doi.org/10.1016/j.ijsolstr.2008.10.012
- Ma, H.M., Gao, X.L. and Reddy, J.N. (2008), "A microstructure-dependent Timoshenko beam model based on a modified couple stress theory", J. Mech. Phys. Solids, 56(12), 3379-3391. https://doi.org/10.1016/j.jmps.2008.09.007
- Mindlin, R.D. (1963), "Influence of couple-stresses on stress concentrations", Exp. Mech., 3, 1-7. https://doi.org/10.1007/BF02327219
- Mindlin, R.D. and Tiersten, H.F. (1962), "Effects of couple-stresses in linear elasticity", Arch. Ration Mech. Anal., 11(1), 415-448. https://doi.org/10.1007/BF00253946
- Mohammadi-Alasti, B., Rezazadeh, G., Borgheei, A.M., Minaei, S. and Habibifar, R. (2011), "On the mechanical behavior of a functionally graded micro-beam subjected to a thermal moment and nonlinear electrostatic pressure", Compos. Struct., 93(6), 1516-1525. https://doi.org/10.1016/j.compstruct.2010.11.013
- Nateghi A. and Salamat-Talab, M. (2013), "Thermal effect on size dependent behavior of functionally graded microbeams based on modified couple stress theory", Compos. Struct., 96, 97-110. https://doi.org/10.1016/j.compstruct.2012.08.048
- Park, S.K. and Gao, X.L. (2006), "Bernoulli-Euler beam model based on a modified couple stress theory", J. Micromech. Microeng., 16(11), 2355-2359. https://doi.org/10.1088/0960-1317/16/11/015
- Pei, J., Tian, F. and Thundat, T. (2004), "Glucose biosensor based on the microcantilever", Anal. Chem., 76(2), 292-297. https://doi.org/10.1021/ac035048k
- Rahaeifard, M., Kahrobaiyan, M.H. and Ahmadian, M.T. (2009), "Sensitivity analysis of atomic force microscope cantilever made of functionally graded materials", Proceedings of the 3rd International Conference on Micro- and Nanosystems, San Diego, CA, USA.
- Reddy, J.N. (2011), "Microstructure-dependent couple stress theories of functionally graded beams", J. Mech. Phys. Solids, 59(11), 2382-2399. https://doi.org/10.1016/j.jmps.2011.06.008
- Rezazadeh, G., Tahmasebi, A. and Zubtsov, M. (2006), "Application of piezoelectric layers in electrostatic MEM actuators: controlling of pull-in voltage", J. Microsyst. Technol., 12(12), 1163-1170. https://doi.org/10.1007/s00542-006-0245-5
- Salamat-Talab, M., Nateghi, A. and Torabi, J. (2012), "Static and dynamic analysis of third-order shear deformation FG micro beam based on modified couple stress theory", Int. J. Mech. Sci., 57(1), 63-73. https://doi.org/10.1016/j.ijmecsci.2012.02.004
- Sedighi, H.M., Changizian, M. and Noghrehabadi, A. (2014), "Dynamic pull-in instability of geometrically nonlinear actuated micro-beams based on the modified couple stress theory", Latin Am. J. Solids Struct., 11(5), 810-825. https://doi.org/10.1590/S1679-78252014000500005
- Senturia, S.D. (1998), "CAD challenges for microsensors, microactuators, and microsystems", Proceeding of IEEE, 86(8), 1611-1626. https://doi.org/10.1109/5.704266
- Shaat, M., Akbarzadeh Khorshidi, M., Abdelkefi, A. and Shariati, M. (2016), "Modeling and vibration characteristics of cracked nano-beams made of nanocrystalline materials", Int. J. Mech. Sci., 115-116, 574-585. https://doi.org/10.1016/j.ijmecsci.2016.07.037
- Simsek, M. (2010), "Dynamic analysis of an embedded microbeam carrying a moving microparticle based on the modified couple stress theory", Int. J. Eng. Sci., 48(12), 1721-1732. https://doi.org/10.1016/j.ijengsci.2010.09.027
- Simsek, M. and Reddy, J.N. (2013a), "Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory", Int. J. Eng. Sci., 64, 37-53. https://doi.org/10.1016/j.ijengsci.2012.12.002
- Simsek, M. and Reddy, J.N. (2013b), "A unified higher order beam theory for buckling of a functionally graded microbeam embedded in elastic medium using modified couple stress theory", Compos. Struct., 101, 47-58. https://doi.org/10.1016/j.compstruct.2013.01.017
- Simsek, M., Kocatürk, T. and Akbas, S.D. (2013), "Static bending of a functionally graded microscale Timoshenko beam based on the modified couple stress theory", Compos. Struct., 95, 740-747. https://doi.org/10.1016/j.compstruct.2012.08.036
- Tang, M., Ni, Q., Wang, L., Luo, Y. and Wang, Y. (2014), "Size-dependent vibration analysis of a microbeam in flow based on modified couple stress theory", Int. J. Eng. Sci., 85, 20-30. https://doi.org/10.1016/j.ijengsci.2014.07.006
- Tadi Beni, Y., Jafari, A. and Razavi, H. (2015), "Size Effect on Free Transverse Vibration of Cracked Nanobeams using Couple Stress Theory", Int. J. Eng., 28(2), 296-304.
- Tagrara, S.H., Benachour, A., Bouiadjra, M.B. and Tounsi, A. (2015), "On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams", Steel Compos. Struct., Int. J., 19(5), 1259-1277. https://doi.org/10.12989/scs.2015.19.5.1259
- Torabi, K. and Nafar Dastgerdi, J. (2012), "An analytical method for free vibration analysis of Timoshenko beam theory applied to cracked nanobeams using a nonlocal elasticity model", Thin. Solid Films, 520(21), 6595-6602. https://doi.org/10.1016/j.tsf.2012.06.063
- Toupin, R.A. (1962), "Elastic materials with couple stresses", Arch. Ration Mech. Anal., 11(1), 385-414. https://doi.org/10.1007/BF00253945
- Xia, W., Wang, L. and Yin, L. (2010), "Nonlinear non-classical microscale beams: static, bending, postbuckling and free vibration", Int. J. Eng. Sci., 48(12), 2044-2053. https://doi.org/10.1016/j.ijengsci.2010.04.010
- Wang, L. (2010), "Size-dependent vibration characteristics of fluid-conveying Microtubes", J. Fluids Struct., 26(4), 675-684. https://doi.org/10.1016/j.jfluidstructs.2010.02.005
- Wang, L., Xu, Y.Y. and Ni, Q. (2013), "Size-dependent vibration analysis of three-dimensional cylindrical microbeams based on modified couple stress theory: A unified treatment", Int. J. Eng. Sci., 68, 1-10. https://doi.org/10.1016/j.ijengsci.2013.03.004
- Wang, Y.-G., Lin, W.-H., Zhou, C.-L. and Liu, R.-X. (2014), "Thermal postbuckling and free vibration of extensible microscale beams based on modified couple stress theory", J. Mech., 31(1), 37-46.
- Witvrouw, A. and Mehta, A. (2005), "The use of functionally graded Ploy-SiGe Layers for MEMS Applications", Mater. Sci. Forum, 492-493, 255-260.
- Yang, F., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X
- Yu, Z. and Chu, F. (2009), "Identification of crack in functionally graded material beams using the pversion of finite element method", J. Sound Vib., 325(1-2), 69-84. https://doi.org/10.1016/j.jsv.2009.03.010
- Zamanzadeh, M., Rezazadeh, G., Jafarsadeghi-Poornaki, I. and Shabani, R. (2013), "Static and dynamic stability modeling of a capacitive FGM micro-beam in presence of temperature changes", Appl. Math. Model., 37(10-11), 6964-6978. https://doi.org/10.1016/j.apm.2013.02.034
- Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., Int. J., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693
- Zhang, J. and Fu, Y. (2012), "Pull-in analysis of electrically actuated viscoelastic microbeams based on a modified couple stress theory", Meccanica, 47(7), 1649-1658. https://doi.org/10.1007/s11012-012-9545-2
- Zook, J.D., Burns, D.W., Guckel, H., Smegowsky, J.J., Englestad, R.L. and Feng, Z. (1992), "Characteristics of polysilicon resonant microbeams", Sensors Actuat., 35(1), 31-59.
Cited by
- Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model vol.34, pp.5, 2018, https://doi.org/10.12989/scs.2020.34.5.643
- Dynamic analysis of a laminated composite beam under harmonic load vol.9, pp.6, 2020, https://doi.org/10.12989/csm.2020.9.6.563
- Physical stability response of a SLGS resting on viscoelastic medium using nonlocal integral first-order theory vol.37, pp.6, 2018, https://doi.org/10.12989/scs.2020.37.6.695
- The nano scale buckling properties of isolated protein microtubules based on modified strain gradient theory and a new single variable trigonometric beam theory vol.10, pp.1, 2018, https://doi.org/10.12989/anr.2021.10.1.015
- In-plane varying bending force effects on wave dispersion characteristics of single-layered graphene sheets vol.10, pp.2, 2021, https://doi.org/10.12989/anr.2021.10.2.101
- Parametric vibration analysis of single-walled carbon nanotubes based on Sanders shell theory vol.10, pp.2, 2021, https://doi.org/10.12989/anr.2021.10.2.165
- Static analysis of cutout microstructures incorporating the microstructure and surface effects vol.38, pp.5, 2018, https://doi.org/10.12989/scs.2021.38.5.583
- Propagation of waves with nonlocal effects for vibration response of armchair double-walled CNTs vol.11, pp.2, 2018, https://doi.org/10.12989/anr.2021.11.2.183
- An investigation of mechanical properties of kidney tissues by using mechanical bidomain model vol.11, pp.2, 2018, https://doi.org/10.12989/anr.2021.11.2.193