DOI QR코드

DOI QR Code

Microbe-derived extracellular vesicles as a smart drug delivery system

  • Published : 2018.09.15

Abstract

The human microbiome is known to play an essential role in influencing host health. Extracellular vesicles (EVs) have also been reported to act on a variety of signaling pathways, distally transport cellular components such as proteins, lipids, and nucleic acid, and have immunomodulatory effects. Here we shall review the current understanding of the intersectionality of the human microbiome and EVs in the emerging field of microbiota-derived EVs and their pharmacological potential. Microbes secrete several classes of EVs: outer membrane vesicles (OMVs), membrane vesicles (MVs), and apoptotic bodies. EV biogenesis is unique to each cell and regulated by sophisticated signaling pathways. EVs are primarily composed of lipids, proteins, nucleic acids, and recent evidence suggests they may also carry metabolites. These components interact with host cells and control various cellular processes by transferring their constituents. The pharmacological potential of microbiome-derived EVs as vaccine candidates, biomarkers, and a smart drug delivery system is a promising area of future research. Therefore, it is necessary to elucidate in detail the mechanisms of microbiome-derived EV action in host health in a multi-disciplinary manner.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea(NRF)

References

  1. H Rashed M, Bayraktar E, K Helal G, Abd-Ellah MF, Amero P, Chavez-Reyes A, et al. Exosomes: From Garbage Bins to Promising Therapeutic Targets. Int J Mol Sci 2017;18: E538. doi: 10.3390/ijms18030538.
  2. Deatherage BL, Cookson BT. Membrane vesicle release in bacteria, eukaryotes, and archaea: a conserved yet underappreciated aspect of microbial life. Infect Immun 2012;80:1948-1957. doi: 10.1128/IAI.06014-11.
  3. Zaborowski MP, Balaj L, Breakefield XO, Lai CP. Extracellular vesicles: Composition, biological relevance, and methods of study. Bioscience 2015;65:783-797. https://doi.org/10.1093/biosci/biv084
  4. McConnell MJ. Extracellular vesicles and immune modulation. Immunol Cell Biol 2018;96:681-682. https://doi.org/10.1111/imcb.12188
  5. Lederberg J, Mccray AT. "Ome Sweet'Omics--A Genealogical Treasury of Words". The Scientist 2001:8.
  6. Young VB. The role of the microbiome in human health and disease: an introduction for clinicians. BMJ 2017;356:j831. doi: 10.1136/bmj.j831.
  7. Takiishi T, Fenero CIM, Camara NOS. Intestinal barrier and gut microbiota:Shaping our immune responses throughout life. Tissue Barriers 2017;5:e1373208. doi: 10.1080/21688370.2017.1373208.
  8. Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, et al. Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr 2018;57:1-24. doi: 10.1007/s00394-017-1445-8.
  9. Lee EY, Choi DY, Kim DK, Kim JW, Park JO, Kim S, et al. Gram-positive bacteria produce membrane vesicles: proteomics-based characterization of Staphylococcus aureus-derived membrane vesicles. Proteomics 2009;9:5425-5436. doi: 10.1002/pmic.200900338.
  10. Peeters SH, de Jonge MI. For the greater good: Programmed cell death in bacterial communities. Microbiol Res 2018;207:161-169. doi: 10.1016/j.micres.2017.11.016.
  11. National Human Genome Research Institute. An Overview of the Human Genome Project. https://www.genome.gov/12011238/an-overview-of-thehuman-genome-project/Accessed 03 Oct 2018
  12. Hillier LW, Coulson A, Murray JI, Bao Z, Sulston JE, Waterston RH. Genomics in C. elegans: so many genes, such a little worm. Genome Res 2005;15:1651-1660. https://doi.org/10.1101/gr.3729105
  13. Lloyd-Price J, Mahurkar A, Rahnavard G, Crabtree J, Orvis J, Hall AB, et al. Strains, functions and dynamics in the expanded Human Microbiome Project. Nature 2017;550:61-66. doi: 10.1038/nature23889.
  14. Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R. Current understanding of the human microbiome. Nature Med 2018;24:392-400. https://doi.org/10.1038/nm.4517
  15. Wang B, Yao M, Lv L, Ling Z, Li L. The Human Microbiota in Health and Disease. Engineering 2017;3:71-82. https://doi.org/10.1016/J.ENG.2017.01.008
  16. Carabotti M, Scirocco A, Maselli MA, Severi C. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol 2015;28:203-209.
  17. Huang YJ, Marsland BJ, Bunyavanich S, O'Mahony L, Leung DY, Muraro A, et al. The microbiome in allergic disease: Current understanding and future opportunities-2017 PRACTALL document of the American Academy of Allergy, Asthma & Immunology and the European Academy of Allergy and Clinical Immunology. J Allergy Clin Immunol 2017;139:1099-1110. doi: 10.1016/j.jaci.2017.02.007.
  18. Azmi AS, Bao B, Sarkar FH. Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review. Cancer Metastasis Rev 2013;32:623-642. doi: 10.1007/s10555-013-9441-9.
  19. Cocucci E, Meldolesi J. Ectosome and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol 2015;6:364-372. doi:10.1016/j.tcb.2015.01.004.
  20. Kulp A, Kuehn MJ. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu Rev Microbiol 2010; 64:163-184. doi:10.1146/annurev.micro.091208.073413.
  21. McBroom AJ, Kuehn MJ. Release of outer membrane vesicles by Gramnegative bacteria is a novel envelope stress response. Mol Microbiol 2007; 63:545-558. https://doi.org/10.1111/j.1365-2958.2006.05522.x
  22. Akers JC, Gonda D, Kim R, Carter BS, Chen CC. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol 2013;113:1-11. doi: 10.1007/s11060-013-1084-8.
  23. Rivera J, Cordero RJ, Nakouzi AS, Frases S, Nicola A, Casadevall A. Bacillus anthracis produces membrane-derived vesicles containing biologically active toxins. Proc Natl Acad Sci U S A 2010;107:19002-19007. doi: 10.1073/pnas.1008843107.
  24. Brown L, Wolf JM, Prados-Rosales R, Casadevall A. Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. Nat Rev Microbiol 2015;13:620-630. doi: 10.1038/nrmicro3480.
  25. Allocati N, Masulli M, Di Ilio C, De Laurenzi V. Die for the community: an overview of programmed cell death in bacteria. Cell Death Dis 2015;6:e1609. doi: 10.1038/cddis.2014.570.
  26. Abels ER, Breakefield XO. Introduction to Extracellular Vesicles: Biogenesis, RNA cargo selection, Content, Release, and Uptake. Cell Mol Neurobiol 2016;36:301-312. doi: 10.1007/s10571-016-0366-z.
  27. Hanson PI, Cashikar A. Multivesicular body morphogenesis. Annu Rev Cell Dev Biol 2012;28:337-362. doi: 10.1146/annurev-cellbio-092910-154152.
  28. Colombo M, Raposo G, Thery C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 2014;30:255-289. doi: 10.1146/annurev-cellbio-101512-122326.
  29. Williams RL, Urbe S. The emerging shape of the ESCRT machinery. Nat Rev Mol Cell Biol 2007;8:355-368.
  30. Ghossoub R, Lembo F, Rubio A, Gaillard CB, Bouchet J, Vitale N, et al. Syntenin-ALIX exosome biogenesis and budding into multivesicular bodies are controlled by ARF6 and PLD2. Nat Commun 2014; 5:3477. doi:10.1038/ncomms4477.
  31. van Niel G, Charrin S, Simoes S, Romao M, Rochin L, Saftig P, et al. The tetraspanin CD63 regulates ESCRT-independent and dependent endosomal sorting during melanogenesis. Dev Cell 2011;21:708-721. doi:10.1016/j.devcel.2011.08.019.
  32. Lee EY, Choi DS, Kim KP, Gho YS. Proteomics in gram-negative bacterial outer membrane vesicles. Mass Spectrom Rev 2018;27:535-555. doi:10.1002/mas.20175.
  33. Poste G, Papahadjopoulos D. Lipid vesicles as carriers for introducing materials into cultured cells: influence of vesicle lipid composition on mechanism(s) of vesicle incorporation into cells. Proc Natl Acad Sci U S A 1976;73:1603-1607. https://doi.org/10.1073/pnas.73.5.1603
  34. Papahadjopoulos D, Poste G, Schaeffer BE, Vail WJ. Membrane fusion and molecular segregation in phospholipid vesicles. Biochim Biophys Acta 1974;352:10-28. https://doi.org/10.1016/0005-2736(74)90175-8
  35. Papahadjopoulos D, Mayhew E, Poste G, Smith S, Vail WJ. Incorporation of lipid vesicles by mammalian cells provides a potential method for modifying cell behaviour. Nature 1974;252:163-166. https://doi.org/10.1038/252163a0
  36. Poste G, Papahadjopoulos D, Vail WJ. Lipid vesicles as carriers for introducing biologically active materials into cells. Methods Cell Biol 1976;14:33-71.
  37. Casal JI, Rueda P, Hurtado A. Parvovirus-like particles as vaccine vectors. Methods 1999;19:174-186. https://doi.org/10.1006/meth.1999.0843
  38. Parmar MM, Edwards K, Madden TD. Incorporation of bacterial membrane proteins into liposomes: factors influencing protein reconstitution. Biochim Biophys Acta 1999;1421: 77-90. https://doi.org/10.1016/S0005-2736(99)00118-2
  39. Gho YS, Kim OY, Jang SC, Yoon CM, Kim YK. Method for treating and diagnosing cancer by using cell-derived microvesicles. Biochim Biophys Acta 2009;1788:2150-2159. https://doi.org/10.1016/j.bbamem.2009.08.001
  40. Raetz CR, Whitfield C. Lipopolysaccharide endotoxins. Annu Rev Biochem 2002;71:635-700. https://doi.org/10.1146/annurev.biochem.71.110601.135414
  41. Kooijmans SA, Vader P, van Dommelen SM, van Solinge WW, Schiffelers RM. Exosome mimetics: a novel class of drug delivery systems. Int J Nanomedicine 2012;7:1525-1541. doi: 10.2147/IJN.S29661.
  42. Baldeschwieler JD. Phospholipid vesicle targeting using synthetic glycolipid and other determinants. Ann N Y Acad Sci 1985;446:349-367. https://doi.org/10.1111/j.1749-6632.1985.tb18413.x
  43. Bussian RW, Wriston JC Jr. Influence of incorporated cerebrosides on the interaction of liposomes with HeLa cells. Biochim Biophys Acta 1977;471:336. https://doi.org/10.1016/0005-2736(77)90261-9
  44. Juliano RL. Drug delivery systems: characteristics and biomedical applications. Oxford University Press, USA 1980:189-236.
  45. Mauk MR, Gamble RC, Baldeschwieler JD. Vesicle targeting: timed release and specificity for leukocytes in mice by subcutaneous injection. Science 1980;207:309-311. https://doi.org/10.1126/science.7350660
  46. Mauk MR, Gamble RC, Baldeschwieler JD. Targeting of lipid vesicles: specificity of carbohydrate receptor analogues for leukocytes in mice. Proc Natl Acad Sci U S A 1980;77:4430-4434. https://doi.org/10.1073/pnas.77.8.4430
  47. Weinstein JN. Liposomes as "targeted" drug carriers: a physical chemical perspective. Pure Appl Chem 1981;53:2241-2254. https://doi.org/10.1351/pac198153112241
  48. Choi DS, Kim DK, Choi SJ, Lee J, Choi JP, Rho S, et al. Proteomic analysis of outer membrane vesicles derived from Pseudomonas aeruginosa. Proteomics 2011;11:3424-3429. doi: 10.1002/pmic.201000212.
  49. Chuanchuen R, Narasaki CT, Schweizer HP. The MexJK efflux pump of Pseudomonas aeruginosa requires OprM for antibiotic efflux but not for efflux of triclosan. J Bacteriol 2002;184:5036-5044. https://doi.org/10.1128/JB.184.18.5036-5044.2002
  50. Zapun A, Contreras-Martel C, Vernet T. Penicillin-binding proteins and ${\beta}$-lactam resistance. FEMS Microbiol Rev 2008;32:361-385. doi:10.1111/j.1574-6976.2007.00095.x.
  51. Storey DG, Ujack EE, Rabin HR, Mitchell I. Pseudomonas aeruginosa lasR Transcription correlates with the transcription of lasA, lasB, and toxA in chronic lung infections associated with cystic fibrosis. Infect Immun 1998;66:2521-2528.
  52. Ashwell G, Morell AG. The role of surface carbohydrates in the hepatic recognition and transport of circulating glycoproteins. Adv Enzymol Relat Areas Mol Biol 1974;41:99-128.
  53. Achord DT, Brot FE, Sly WS. Inhibition of the rat clearance system for agalacto-orosomucoid by yeast mannans and by mannose. Biochem Biophys Res Commun 1977;77:409-415. https://doi.org/10.1016/S0006-291X(77)80213-1
  54. Stahl PD, Rodman JS, Miller MJ, Schlesinger PH. Evidence for receptormediated binding of glycoproteins, glycoconjugates, and lysosomal glycosidases by alveolar macrophages. Proc Natl Acad Sci U S A 1978;75:1399-1403. https://doi.org/10.1073/pnas.75.3.1399
  55. Hong SW, Choi EB, Min TK, Kim JH, Kim MH, Jeon SG, et al. An important role of ${\alpha}$-hemolysin in extracellular vesicles on the development of atopic dermatitis induced by Staphylococcus aureus. PLoS One 2014;9: e100499. doi: 10.1371/journal.pone.0100499.
  56. Otto M. Basis of virulence in community-associated methicillin-resistant Staphylococcus aureus. Annu Rev Microbiol 2010;64:143-162. doi:10.1146/annurev.micro.112408.134309.
  57. Walev I, Martin E, Jonas D, Mohamadzadeh M, Muller-Klieser W, Kunz L, et al. Staphylococcal alpha-toxin kills human keratinocytes by permeabilizing the plasma membrane for monovalent ions. Infect Immun 1993;61:4972-4979.
  58. Wichmann K, Uter W, Weiss J, Breuer K, Heratizadeh A, Mai U, et al. Isolation of ${\alpha}$-toxin-producing Staphylococcus aureus from the skin of highly sensitized adult patients with severe atopic dermatitis. Br J Dermatol 2009;161:300-305. doi: 10.1111/j.1365-2133.2009.09229.x.
  59. Tsatsaronis JA, Franch-Arroyo S, Resch U, Charpentier E. Extracellular vesicle RNA: A universal mediator of microbial communication? Trends Microbiol 2018;26:410-410. doi: 10.1016/j.tim.2018.02.009.
  60. Bitto NJ, Chapman R, Pidot S, Costin A, Lo C, Choi J, et al. Bacteria membrane vesicles transport their DNA cargo into host cells. Sci Rep 2017;7:7072. doi:10.1038/s41598-017-07288-4
  61. Lambertz U, Oviedo Ovando ME, Vasconcelos EJ, Unrau PJ, Myler PJ, Reiner NE. Small RNAs derived from tRNAs and rRNAs are highly enriched in exosomes from both old and new world Leishmania providing evidence for conserved exosomal RNA Packaging. BMC Genomics 2015;16:151. doi: 10.1186/s12864-015-1260-7.
  62. Blenkiron C, Simonov D, Muthukaruppan A, Tsai P, Dauros P, Green S, et al. Uropathogenic Escherichia coli releases extracellular vesicles that are associated with RNA. PLoS One 2016;11:e0160440. doi: 10.1371/journal.pone.0160440.
  63. Sjostrom AE, Sandblad L, Uhlin BE, Wai SN. Membrane vesicle-mediated release of bacterial RNA. Sci Rep 2015;5:15329. doi: 10.1038/srep15329.
  64. Choi EB, Hong SW, Kim DK, Jeon SG, Kim KR, Cho SH, et al. Decreased diversity of nasal microbiota and their secreted extracellular vesicles in patients with chronic rhinosinusitis based on a metagenomic analysis. Allergy 2014;69:517-526. https://doi.org/10.1111/all.12374
  65. Kawamura Y, Yamamoto Y, Sato TA, Ochiya T. Extracellular vesicles as trans-genomic agents: Emerging roles in disease and evolution. Cancer Sci 2017;108:824-830. doi: 10.1111/cas.13222.
  66. Eigenbrod T, Dalpke AH. Bacterial RNA: An underestimated stimulus for innate immune responses. J Immunol 2015;195:411-418. doi: 10.4049/jimmunol.1500530.
  67. Choi SJ, Kim MH, Jeon J, Kim OY, Choi Y, Seo J, et al. Active immunization with extracellular vesicles derived from Staphylococcus aureus effectively protects against Staphylococcal lung infections, mainly via Th1 Cell-mediated immunity. PLoS ONE 2015;10:e0136021. doi:10.1371/journal.pone.0136021
  68. Iraci N, Gaude E, Leonardi T, Costa ASH, Cossetti C, Peruzzotti-Jametti L, et al. Extracellular vesicles are independent metabolic units with asparaginase activity. Nat Chem Biol 2017;13:951-955. doi: 10.1038/nchembio.2422.
  69. Garcia NA, Moncayo-Arlandi J, Sepulveda P, Diez-Juan A. Cardiomyocyte exosomes regulate glycolytic flux in endothelium by direct transfer of GLUT transporters and glycolytic enzymes. Cardiovasc Res 2016;109:397-408. doi: 10.1093/cvr/cvv260.
  70. Cohen LJ, Esterhazy D, Kim SH, Lemetre C, Aguilar RR, Gordon EA, et al. Commensal bacteria make GPCR ligands that mimic human signalling molecules. Nature 2017;549:48-53. doi: 10.1038/nature23874.

Cited by

  1. Development of a colorectal cancer diagnostic model and dietary risk assessment through gut microbiome analysis vol.51, pp.10, 2018, https://doi.org/10.1038/s12276-019-0313-4
  2. Brain tumor diagnostic model and dietary effect based on extracellular vesicle microbiome data in serum vol.52, pp.9, 2018, https://doi.org/10.1038/s12276-020-00501-x
  3. Emerging role of bacterial extracellular vesicles in cancer vol.39, pp.46, 2018, https://doi.org/10.1038/s41388-020-01509-3
  4. Compositional Features of Distinct Microbiota Base on Serum Extracellular Vesicle Metagenomics Analysis in Moderate to Severe Psoriasis Patients vol.10, pp.9, 2018, https://doi.org/10.3390/cells10092349
  5. The therapeutic triad of extracellular vesicles: As drug targets, as drugs, and as drug carriers vol.192, pp.None, 2021, https://doi.org/10.1016/j.bcp.2021.114714