DOI QR코드

DOI QR Code

Temperature-Dependent Thermal and Chemical Stabilities as well as Mechanical Properties of Electrodeposited Nanocrystalline Ni

  • Zheng, Liangfu (School of Material Science and Engineering, Nanchang Hangkong University) ;
  • Peng, Xiao (School of Material Science and Engineering, Nanchang Hangkong University)
  • Received : 2017.12.07
  • Accepted : 2018.05.09
  • Published : 2018.11.20

Abstract

Nanocrystalline (NC) Ni electrodeposits (EDs) with a mean grain size of $34{\pm}12nm$ has been investigated, from room temperature to $800^{\circ}C$ under a purge gas of argon, by both non-isothermal and isothermal differential scanning calorimetry measurements, in combination with characterization of temperature-dependent microstructural evolution. A significant exothermic peak resulting from superimposition of recrystallization and surface oxidation occurs between 340 and $745^{\circ}C$ at a heating rate of $10^{\circ}C/min$ for the NC Ni EDs. The temperatures for recrystallization and oxidation increase with increasing the heating rate. In addition, recrystallization leads to a profound brittle-ductile transition of the Ni EDs in a narrow range around the peak temperature for the recrystallization.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. H. Gleiter, Prog. Mater Sci. 33, 223-315 (1989) https://doi.org/10.1016/0079-6425(89)90001-7
  2. K. Lu, Mater. Sci. Eng. R Rep. 16, 161-221 (1996) https://doi.org/10.1016/0927-796X(95)00187-5
  3. C. Suryanarayana, Int. Mater. Rev. 40, 41-64 (1995) https://doi.org/10.1179/imr.1995.40.2.41
  4. H. Gleiter, Acta Mater. 48, 1-29 (2000) https://doi.org/10.1016/S1359-6454(99)00285-2
  5. A.A. Talin, E.A. Marquis, S.H. Goods, J.J. Kelly, M.K. Miller, Acta Mater. 54, 1935-1947 (2006) https://doi.org/10.1016/j.actamat.2005.12.027
  6. E.J. Suoninen, T. Hakkarainen, J. Mater. Sci. 3, 446-448 (1968) https://doi.org/10.1007/BF00550990
  7. M.H. Seo, J.S. Kim, W.S. Hwang, D.J. Kim, S.S. Hwang, B.S. Chun, Surf. Coat. Technol. 176, 135-140 (2004) https://doi.org/10.1016/S0257-8972(03)00661-3
  8. X. Zhou, Y. Shen, J. Mater. Sci. 49, 3755-3774 (2014) https://doi.org/10.1007/s10853-014-8087-5
  9. W. Chen, W. Gao, Compos. Part A Appl. Sci.Manuf. 42, 1627-1634 (2011) https://doi.org/10.1016/j.compositesa.2011.07.011
  10. J.A. Desai, A. Kumar, Met. Mater. Int. 22, 451-458 (2016) https://doi.org/10.1007/s12540-016-5644-2
  11. M.J. Kim, J.S. Kim, D.J. Kim, H.P. Kim, Met. Mater. Int. 15, 789 (2009) https://doi.org/10.1007/s12540-009-0789-2
  12. G. Palumbo, D.M. Doyle, A.M. El-Sherik, U. Erb, K.T. Aust, Scr. Metall. Mater. 25, 679-684 (1991) https://doi.org/10.1016/0956-716X(91)90114-G
  13. U. Klement, U. Erb, A.M. El-Sherik, K.T. Aust, Mater. Sci. Eng., A 203, 177-186 (1995)
  14. N. Wang, Z. Wang, K.T. Aust, U. Erb, Acta Mater. 45, 1655-1669 (1997) https://doi.org/10.1016/S1359-6454(96)00254-6
  15. C.-S. Lin, P.-C. Hsu, K.-C. Peng, L. Chang, C.-H. Chen, Mater. Trans. 42, 316-322 (2001) https://doi.org/10.2320/matertrans.42.316
  16. Y. Zhang, X. Peng, F. Wang, Mater. Lett. 58, 1134-1138 (2004) https://doi.org/10.1016/j.matlet.2003.09.006
  17. X. Yang, X. Peng, C. Xu, F. Wang, J. Electrochem. Soc. 156, C167-C175 (2009) https://doi.org/10.1149/1.3082378
  18. X. Peng, Nanoscale 2, 262-268 (2010) https://doi.org/10.1039/B9NR00118B
  19. X. Yang, X. Peng, F. Wang, Scr. Mater. 56, 891-894 (2007) https://doi.org/10.1016/j.scriptamat.2007.01.035
  20. C. Zhang, X. Peng, J. Zhao, F. Wang, J. Electrochem. Soc. 152, B321-B326 (2005) https://doi.org/10.1149/1.1952667
  21. Y. Zhou, X. Peng, F. Wang, Scr. Mater. 55, 1039-1042 (2006) https://doi.org/10.1016/j.scriptamat.2006.08.004
  22. L. Zheng, X. Peng, F. Wang, J. Mater. Sci. 47, 7759-7763 (2012) https://doi.org/10.1007/s10853-012-6501-4
  23. L. Zheng, X. Peng, F. Wang, Chin. J. Mater. Res. 24, 501-507 (2010)
  24. L. Zheng, Z. Yang, H. Zhen, X. Peng, J. Mater. Res. 32, 1741-1747 (2017) https://doi.org/10.1557/jmr.2017.163
  25. D.A. Shirley, Phys. Rev. B 5, 4709-4714 (1972) https://doi.org/10.1103/PhysRevB.5.4709
  26. J.F. Moulder, J. Chastain, R.C. King, Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data (Physical Electronics, Perkin-Elmer Corp, Eden Prairie, 1995)
  27. J.L. Grosseau-Poussard, J.F. Dinhut, J.F. Silvain, R. Sabot, Appl. Surf. Sci. 151, 49-62 (1999) https://doi.org/10.1016/S0169-4332(99)00257-3
  28. A. Rollett, F. Humphreys, G.S. Rohrer, M. Hatherly, Recrystallization and Related Annealing Phenomena (Elsevier, Oxford, 2004)
  29. H.E. Kissinger, Anal. Chem. 29, 1702-1706 (1957) https://doi.org/10.1021/ac60131a045
  30. X. Peng, T. Li, W. Wu, Oxid. Met. 51, 291-315 (1999) https://doi.org/10.1023/A:1018874707526
  31. X. Peng, D. Ping, T. Li, W. Wu, J. Electrochem. Soc. 145, 389-398 (1998) https://doi.org/10.1149/1.1838274
  32. T.H. Courtney, Mechanical Behavior of Materials (McGraw-Hill, Boston, 2000)

Cited by

  1. Effect of pH on Dimethylamine Borane Reduced Electroless Nickel Deposits on AISI/SAE 1045 Steel Surface vol.26, pp.6, 2018, https://doi.org/10.1007/s12540-019-00362-8