DOI QR코드

DOI QR Code

High-Efficiency Inhibition of Gravity Segregation in Al-Bi Immiscible Alloys by Adding Lanthanum

  • Jia, Peng (School of Material Science and Engineering, University of Jinan) ;
  • Zhang, Jinyang (School of Material Science and Engineering, University of Jinan) ;
  • Geng, Haoran (School of Material Science and Engineering, University of Jinan) ;
  • Teng, Xinying (School of Material Science and Engineering, University of Jinan) ;
  • Zhao, Degang (School of Material Science and Engineering, University of Jinan) ;
  • Yang, Zhongxi (School of Material Science and Engineering, University of Jinan) ;
  • Wang, Yi (State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology) ;
  • Hu, Song (State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology) ;
  • Xiang, Jun (State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology) ;
  • Hu, Xun (School of Material Science and Engineering, University of Jinan)
  • 투고 : 2017.09.08
  • 심사 : 2018.04.23
  • 발행 : 2018.11.20

초록

The inhibition of gravity segregation has been a long-standing challenge in fabrication and applications of homogeneous immiscible alloys. Therefore, the effect of rare-earth La on the gravity segregation of Al-Bi immiscible alloys was investigated to understand the homogenization mechanism. The results showed that the addition of La can completely suppress the gravity segregation. This is attributed to the nucleation of Bi-rich liquid phase on the in-situ produced $LaBi_2$ phase and the change of the shape of $LaBi_2@Bi$ droplets. In addition, a novel strategy is developed to prepare the homogeneous immiscible alloys through the addition of rare-earth elements. This strategy not only is applicable to other immiscible alloys, but also is conducive to finding more elements to suppress the gravity segregation. This study provided a useful reference for the fabrication of the homogeneous immiscible alloys.

키워드

과제정보

연구 과제 주관 기관 : National Natural Science Foundation of China, Natural Science Foundation of Shandong Province

참고문헌

  1. L. Ratke, S. Diefenbach, Mater. Sci. Eng., R 15, 263-347 (1995)
  2. Z. Chen, Y.Y. Tang, Q. Tao, Q. Chen, T. Liang, J. Alloys Compd. 662, 628-633 (2016) https://doi.org/10.1016/j.jallcom.2015.11.202
  3. T.A. Costa, M. Dias, E.S. Freitas, L.C. Casteletti, A. Garcia, J. Alloys Compd. 689, 767-776 (2016) https://doi.org/10.1016/j.jallcom.2016.08.051
  4. Y.H. Wang, P.D. Xing, P. Wang, J.H. Liu, J. Alloys Compd. 656, 581-584 (2016) https://doi.org/10.1016/j.jallcom.2015.10.028
  5. J.D. Livingston, J. Appl. Phys. 39, 3836-3843 (1968) https://doi.org/10.1063/1.1656862
  6. J. Wecker, R.V. Helmolt, L. Schultz, K. Samwer, Appl. Phys. Lett. 62, 1985-1987 (1993) https://doi.org/10.1063/1.109511
  7. C.P. Wang, X.J. Liu, I. Ohnuma, R. Kainuma, K. Ishida, Science 297, 990-993 (2002) https://doi.org/10.1126/science.1073050
  8. L.J. Zou, F. Chen, X. Chen, Y.J. Lin, Q. Shen, E.J. Lavernia, L.M. Zhang, J. Alloys Compd. 689, 6-14 (2016) https://doi.org/10.1016/j.jallcom.2016.07.258
  9. T. Nagase, Y. Umakoshi, J. Alloys Compd. 495, L1-L4 (2010) https://doi.org/10.1016/j.jallcom.2010.01.127
  10. P. Jia, J.Y. Zhang, H.R. Geng, Z.X. Yang, X.Y. Teng, D.G. Zhao, Y. Wang, M. Zuo, N.Q. Sun, J. Mol. Liq. 232, 457-461 (2017) https://doi.org/10.1016/j.molliq.2017.02.106
  11. T. Nagase, Y. Umakoshi, J. Alloys Compd. 505, L43-L46 (2010) https://doi.org/10.1016/j.jallcom.2010.06.092
  12. W.L. Wang, Y.H. Wu, L.H. Li, N. Yan, B. Wei, J. Alloys Compd. 693, 650-657 (2017) https://doi.org/10.1016/j.jallcom.2016.09.140
  13. W.T. Kim, D.L. Zhang, B. Cantor, Mater. Sci. Eng. A 134, 1133-1138 (1991) https://doi.org/10.1016/0921-5093(91)90940-O
  14. A. Castellero, G. Angella, M. Vedani, M. Baricco, J. Alloys Compd. 536, S148-S153 (2012) https://doi.org/10.1016/j.jallcom.2011.12.089
  15. R. Fedor, W. Smith, Method of Making a Fine Dispersion Aluminum Base Bearing, 3797084, U.S. Patent (1974)
  16. J. He, J.Z. Zhao, H.L. Li, X.F. Zhang, Q.X. Zhang, Metall. Mater. Trans. A 39, 1174-1182 (2008) https://doi.org/10.1007/s11661-008-9499-0
  17. A.P. Silva, J.E. Spinelli, N. Mangelinck-Noel, A. Garcia, Mater. Des. 31, 4584-4591 (2010) https://doi.org/10.1016/j.matdes.2010.05.046
  18. T.X. Zheng, Y.B. Zhong, Z.S. Lei, W.L. Ren, Z.M. Ren, F. Debray, J. Alloys Compd. 623, 36-41 (2015) https://doi.org/10.1016/j.jallcom.2014.10.095
  19. Y.B. Zhong, T.X. Zheng, L.C. Dong, B.F. Zhou, W.L. Ren, J. Wang, Mater. Des. 100, 168-174 (2016) https://doi.org/10.1016/j.matdes.2016.03.078
  20. N. Yan, Z.Y. Hong, D.L. Geng, W.L. Wang, B. Wei, J. Alloys Compd. 544, 6-12 (2016)
  21. W. Zhai, H.M. Liu, B. Wei, Mater. Lett. 141, 221-224 (2015) https://doi.org/10.1016/j.matlet.2014.11.087
  22. H. Xie, J.C. Wang, J.F. Fan, W.X. Hao, G.C. Yang, Hot Work. Technol. 4, 49-52 (2003)
  23. I. Budai, G. Kaptay, Intermetallics 19, 423-425 (2011) https://doi.org/10.1016/j.intermet.2010.10.005
  24. B.B. Schwarz, N. Mattern, O. Shuleshova, J. Eckert, Intermetallics 32, 250-258 (2013) https://doi.org/10.1016/j.intermet.2012.07.023
  25. L.Y. Chen, J.Q. Xu, H. Choi, H. Konishi, S. Jin, X.C. Li, Nat. Commun. 5, 3879 (2014) https://doi.org/10.1038/ncomms4879
  26. K. Zhang, X.F. Bian, Y.M. Li, C.C. Yang, H.B. Yang, Y. Zhang, J. Alloys Compd. 639, 563-570 (2015) https://doi.org/10.1016/j.jallcom.2015.03.194
  27. C.Z. Cao, L.Y. Chen, J.Q. Xu, J.Z. Zhao, M. Pozuelo, X.C. Li, Mater. Lett. 174, 213-216 (2016) https://doi.org/10.1016/j.matlet.2016.03.105
  28. Q. Sun, H.X. Jiang, J.Z. Zhao, J. He, Mater. Des. 91, 361-367 (2016) https://doi.org/10.1016/j.matdes.2015.11.090
  29. T.N. Man, L. Zhang, N.K. Xu, W.B. Wang, Z.L. Xiang, E.G. Wang, Metals 6, 177 (2016) https://doi.org/10.3390/met6080177
  30. L. Ratke, P.W. Voorhees, Growth and Coarsening: Ostwald Ripening in Material Processing, 1st edn. (Springer, New York, 2002), pp. 239-242
  31. J. Jia, J.Z. Zhao, J.J. Guo, Y. Liu, Immiscible Alloy and Preparation Technology, 1st edn. (Harbin Institute of Technology Press, Harbin, 2002), pp. 56-64

피인용 문헌

  1. Processing, As-Cast Microstructure and Wear Characteristics of a Monotectic Al-Bi-Cu Alloy vol.28, pp.2, 2018, https://doi.org/10.1007/s11665-018-3851-3
  2. Formulation of Al-Bi-Sn immiscible alloys versus the solidification behaviors and structures vol.54, pp.5, 2018, https://doi.org/10.1007/s10853-018-3128-0
  3. Correlation of composition, cooling rate and superheating temperature with solidification behaviors and microstructures of Al-Bi-Sn ribbons vol.6, pp.6, 2018, https://doi.org/10.1088/2053-1591/ab0afd
  4. Evaluation of hot corrosion performance of HVOF coatings on PCGTA welded Fe-based alloy A-286 in Na2SO4%-7.5%NaVO3%-5%NaCl environment vol.8, pp.4, 2018, https://doi.org/10.1088/2051-672x/abc8f8
  5. Evaluating Microstructure, Wear Resistance and Tensile Properties of Al-Bi(-Cu, -Zn) Alloys for Lightweight Sliding Bearings vol.11, pp.1, 2018, https://doi.org/10.3390/met11010153