DOI QR코드

DOI QR Code

Corrosion Properties of Dissimilar Friction Stir Welded 6061 Aluminum and HT590 Steel

  • Seo, Bosung (Gangwon Regional Division, Korea Institute of Industrial Technology) ;
  • Song, Kuk Hyun (Department of Welding and Joining Science Engineering, Chosun University) ;
  • Park, Kwangsuk (Gangwon Regional Division, Korea Institute of Industrial Technology)
  • 투고 : 2018.03.09
  • 심사 : 2018.04.23
  • 발행 : 2018.11.20

초록

Corrosion properties of dissimilar friction stir welded 6061 aluminum and HT590 steel were investigated to understand effects of galvanic corrosion. As cathode when coupled, HT590 was cathodically protected. However, the passivation of AA6061 made the aluminum alloy cathode temporarily, which leaded to corrosion of HT590. From the EIS analysis showing Warburg diffusion plot in Nyquist plots, it can be inferred that the stable passivation layer was formed on AA6061. However, the weld as well as HT590 did not show Warburg diffusion plot in Nyquist plots, suggesting that there was no barrier for corrosion or even if it exists, the barrier had no function for preventing and/or retarding charge transport through the passivation layer. The open circuit potential measurements showed that the potential of the weld was similar to that of HT590, which lied in the pitting region for AA6061, making the aluminum alloy part of the weld keep corrosion state. That resulted in the cracked oxide film on AA6061 of the weld, which could not play a role of corrosion barrier.

키워드

과제정보

연구 과제 주관 기관 : Korea Institute of Industrial Technology

참고문헌

  1. V.K. Soo, P. Compston, M. Doolan, Proc. CIRP 29, 426 (2015)
  2. M.-Y. Lyu, T.G. Choi, Int. J. Precis. Eng. Manuf. 16, 213 (2015) https://doi.org/10.1007/s12541-015-0029-x
  3. D.S. Kumar, C.T. Sasanka, K. Ravindra, K. Suman, Am. J. Mater. Sci. Technol. 4, 12 (2015)
  4. S. Wenlong, C. Xiaokai, W. Lu, Energy Procedia 88, 889 (2016) https://doi.org/10.1016/j.egypro.2016.06.106
  5. W. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Haszler, A. Vieregge, Mater. Sci. Eng. A 280, 37 (2000) https://doi.org/10.1016/S0921-5093(99)00653-X
  6. W.J. Joost, P.E. Krajewski, Scr. Mater. 128, 107 (2017) https://doi.org/10.1016/j.scriptamat.2016.07.035
  7. J. Yoon, S.-I. Lee, Proc. Inst. Mech. Eng. D 229, 1732 (2015) https://doi.org/10.1177/0954407014567909
  8. Y. Chen, K. Nakata, Mater. Des. 30, 3913 (2009) https://doi.org/10.1016/j.matdes.2009.03.007
  9. C. Schneider, T. Weinberger, J. Inoue, T. Koseki, N. Enzinger, Sci. Technol. Weld. Join. 16, 100 (2011) https://doi.org/10.1179/1362171810Y.0000000012
  10. T. Tanaka, T. Morishige, T. Hirata, Scr. Mater. 61, 756 (2009) https://doi.org/10.1016/j.scriptamat.2009.06.022
  11. P.B. Srinivasan, K. Arora, W. Dietzel, S. Pandey, M. Schaper, J. Alloys Compd. 492, 631 (2010) https://doi.org/10.1016/j.jallcom.2009.11.198
  12. W.-B. Lee, M. Schmuecker, U.A. Mercardo, G. Biallas, S.-B. Jung, Scr. Mater. 55, 355 (2006) https://doi.org/10.1016/j.scriptamat.2006.04.028
  13. W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Temple-Smith, C.J. Dawes, Friction stir butt welding, GB Patent No. 9125978-8 (1991)
  14. X. He, F. Gu, A. Ball, Prog. Mater Sci. 65, 1 (2014) https://doi.org/10.1016/j.pmatsci.2014.03.003
  15. T. McNelley, S. Swaminathan, J. Su, Scr. Mater. 58, 349 (2008) https://doi.org/10.1016/j.scriptamat.2007.09.064
  16. Y.D. Chung, H. Fujii, Y. Sun, H. Tanigawa, Mater. Sci. Eng. A 528, 5912 (2011)
  17. Y. Sun, H. Fujii, N. Takaki, Y. Okitsu, Mater. Des. 47, 350 (2013) https://doi.org/10.1016/j.matdes.2012.12.007
  18. M. Aonuma, K. Nakata, Mater. Sci. Eng. B 161, 46 (2009) https://doi.org/10.1016/j.mseb.2009.02.020
  19. Y.S. Sato, S.H.C. Park, M. Michiuchi, H. Kokawa, Scr. Mater. 50, 1233 (2004) https://doi.org/10.1016/j.scriptamat.2004.02.002
  20. L. Troeger, E. Starke Jr., Mater. Sci. Eng., A 277, 102 (2000)
  21. M. Usta, M. Glicksman, R. Wright, Metall. Mater. Trans. A 35, 435 (2004) https://doi.org/10.1007/s11661-004-0354-7
  22. A.K. Ray, B. Goswami, A. Raj, M. Singh, J. Metall. Mater. Sci. 55, 21 (2013)
  23. W. Jiang, R. Kovacevic, Proc. Inst. Mech. Eng. B. 218, 1323 (2004) https://doi.org/10.1243/0954405042323612
  24. A. Abdollah-Zadeh, T. Saeid, B. Sazgari, J. Alloys Compd. 460, 535 (2008) https://doi.org/10.1016/j.jallcom.2007.06.009
  25. E.T. Akinlabi, A. Andrews, S.A. Akinlabi, Trans. Nonferrous Met. Soc. China 24, 1323 (2014) https://doi.org/10.1016/S1003-6326(14)63195-2
  26. L. Shao, Y. Shi, J. Huang, S. Wu, Mater. Des. 66, 453 (2015) https://doi.org/10.1016/j.matdes.2014.06.026
  27. C. Liu, D. Chen, S. Bhole, X. Cao, M. Jahazi, Mater. Charact. 60, 370 (2009) https://doi.org/10.1016/j.matchar.2008.10.009
  28. J. Corral, E. Trillo, Y. Li, L. Murr, J. Mater. Sci. Lett. 19, 2117 (2000) https://doi.org/10.1023/A:1026710422951
  29. U. Donatus, G. Thompson, X. Zhou, J. Wang, A. Cassell, K. Beamish, Mater. Charact. 107, 85 (2015) https://doi.org/10.1016/j.matchar.2015.07.002
  30. Z. Ahmad, Principles of Corrosion Engineering and Corrosion Control (Elsevier, New York, 2006), pp. 75-83
  31. M. Doche, J. Rameau, R. Durand, F. Novel-Cattin, Corros. Sci. 41, 805 (1999) https://doi.org/10.1016/S0010-938X(98)00107-3
  32. K. Moore, J. Sykes, P. Grant, Corros. Sci. 50, 3233 (2008) https://doi.org/10.1016/j.corsci.2008.08.027
  33. J.C. Bertoncello, S.M. Manhabosco, L.F. Dick, Corros. Sci. 94, 359 (2015) https://doi.org/10.1016/j.corsci.2015.02.029
  34. D. Fersini, A. Pirondi, Eng. Fract. Mech. 74, 468 (2007) https://doi.org/10.1016/j.engfracmech.2006.07.010
  35. A. Astarita, M. Curioni, A. Squillace, X. Zhou, F. Bellucci, G. Thompson, K. Beamish, Mater. Corros. 66, 111 (2015) https://doi.org/10.1002/maco.201307476
  36. F. Mansfeld, J. Kenkel, Corrosion 31, 298 (1975) https://doi.org/10.5006/0010-9312-31.8.298
  37. F. Mansfeld, Corrosion 27, 436 (1971) https://doi.org/10.5006/0010-9312-27.10.436
  38. L. Hamadou, A. Kadri, N. Benbrahim, Appl. Surf. Sci. 252, 1510 (2005) https://doi.org/10.1016/j.apsusc.2005.02.135
  39. A. Benedeti, P. Sumodjo, K. Nobe, P. Cabot, W. Proud, Electrochim. Acta 40, 2657 (1995) https://doi.org/10.1016/0013-4686(95)00108-Q
  40. J. Su, M. Ma, T. Wang, X. Guo, L. Hou, Z. Wang, Chin. J. Aeronaut. 28, 954 (2015) https://doi.org/10.1016/j.cja.2015.02.015
  41. F. Martin, G. Cheek, W. O'Grady, P. Natishan, Corros. Sci. 47, 3187 (2005) https://doi.org/10.1016/j.corsci.2005.05.058
  42. N. Ekekwe, Electrochemical Impedance Spectroscopy: Corrosion Behavior Application: Theory, Modeling and Experimentation (VDM Publishing, Saarbrucken, 2009), pp. 16-37
  43. H. Zhang, Y. Zhao, Z. Jiang, Mater. Lett. 59, 3370 (2005) https://doi.org/10.1016/j.matlet.2005.06.002
  44. I. Shin, H. Seo, M.-K. Son, J.-K. Kim, K. Prabakar, H.-J. Kim, Curr. Appl. Phys. 10, S422 (2010) https://doi.org/10.1016/j.cap.2009.12.039
  45. J.S. Baek, J.G. Kim, D.H. Hur, J.S. Kim, Corros. Sci. 45, 983 (2003) https://doi.org/10.1016/S0010-938X(02)00183-X

피인용 문헌

  1. Microstructure, mechanical properties and formability of friction stir welded dissimilar materials of IF-steel and 6061 Al alloy vol.26, pp.6, 2018, https://doi.org/10.1007/s12613-019-1783-z
  2. EIS Characteristics of Galvanic Couple of Aluminum Alloy and High-strength Steel under Thin Solution Films vol.167, pp.13, 2018, https://doi.org/10.1149/1945-7111/abbb44
  3. Corrosion behavior and failure mechanism of electromagnetic pulse welded joints between galvanized steel and aluminum alloy sheets vol.64, pp.None, 2021, https://doi.org/10.1016/j.jmapro.2021.02.039
  4. Corrosion Behavior of a Laser-MIG Hybrid Welding-Brazing Joint of 6061 Aluminum Alloy to SUS304 Stainless Steel vol.77, pp.12, 2018, https://doi.org/10.5006/3866
  5. Assessment of the Corrosion Behavior of Friction-Stir-Welded Dissimilar Aluminum Alloys vol.15, pp.1, 2018, https://doi.org/10.3390/ma15010260