DOI QR코드

DOI QR Code

Population genetic structure and regional fragmentation of rare CO1 haplotypes of Black-tailed Gulls (Larus crassirostris: Laridae) in Korean Peninsula

한반도 괭이갈매기의 개체군 유전 구조와 희귀 CO1 유전자형의 지리적 파편화

  • Received : 2018.11.07
  • Accepted : 2018.12.19
  • Published : 2018.12.31

Abstract

The Black-tailed gull (Larus crassirostris) is one of the most common gull species in the Northeast Asia and classified as LC (least concern) in the IUCN Red List. The bird has become a useful indicator for marine environmental pollution and habitat disruption, since the human activities impacted marine environments. Here we show that the black-tailed Gull has 6 haplotypes and some rare haplotypes are locally limited implying that the bird may not disperse far. This study may be the first report on population genetic study of Black-tailed Gull in Korea and could be used as the baseline data for monitoring and genetic study on the bird as an environmental indicator.

괭이갈매기는 동북아시아에서 가장 흔한 갈매기류 중 하나이며, IUCN에 의하면 LC(Least Concern)로 분류되어 있다. 인간의 활동이 해양환경에 영향을 미친 이래 괭이갈매기는 해양 환경오염과 서식지 교란의 중요한 지표종이 되었다. 본 연구에서 괭이갈매기가 6개의 미토콘드리아 CO1 하플로타입(haplotype)이 있고, 이중 일부 희귀 haplotype은 지리적으로 제한되어 나타난다는 사실을 확인하였으며, 이러한 현상은 본 종이 멀리 분산하지 않음을 암시한다. 본 논문은 한국에서 괭이갈매기를 대상으로 한 첫번째 개체군 유전적 연구결과이며, 환경지표종으로서 모니터링과 유전학적 연구의 기초자료가 될 것이다.

Keywords

Acknowledgement

Grant : Monitoring the impact of Climate Change on Ecosystems

Supported by : National Institute of Ecology, National Institute of Biological Resources, National Research Foundation of Korea, Korea National Park Research Institute

References

  1. Bandelt H.J., P. Forster and A. Rohl. 1999. Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution 16(1): 37-48. https://doi.org/10.1093/oxfordjournals.molbev.a026036
  2. BirdLife International. 2012. Larus crassirostris. IUCN Red List of threatened species. Ver. 2013.2.
  3. Excoffier L. and H.E. Lischer. 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources 10(3): 564-567. https://doi.org/10.1111/j.1755-0998.2010.02847.x
  4. Folmer O., M. Black, W. Hoeh, R. Lutz and R. Vrijenhoek. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit 1 form diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294-299.
  5. Harrison, P. 1983. Seabirds: an identification guide. Christopher Helm, London. 448pp.
  6. Kang J.H., T.H. Kang, S.H. Yoo, H.J. Cho, S.W. Leem and I.K. Kim. 2008. Study on the breeding status of the natural monument islet (Chilbaldo, Sasudo, Nando, Hongdo). The Korean Journal of Ornithology 15(2): 169-175.
  7. Kazama K., B. Nishizawa, S. Tsukamoto, J.E. Gonzalez, M.T. Kazama and Y. Watanuki. 2018. Male and female Black-tailed Gulls Larus crassirostris feed on the same prey species but use different feeding habitats. Journal of Ornithology 159(4):923-934. https://doi.org/10.1007/s10336-018-1565-9
  8. Kim C.H., Y.S. Kwon, J.H. Kang and J.C. Yoo. 2007. Avifauna of Dokdo Island. The Korean Journal of Ornithology 14(2): 113-125.
  9. Kim J., J.R. Shin and T.H. Koo. 2009. Heavy metal distributions of some wild birds from Korea. Archives of Environmental Contamination and Toxicology 56(2): 317-324. https://doi.org/10.1007/s00244-008-9180-z
  10. Kim, M., Y.S. Kwon, H.S. Noh. 2013. Difference in Black-tailed Gull (Larus crassirostris) diet during the breeding season for the last 10 years in the South Sea of Korea. Journal of ecology and environment 36(4): 217-222. https://doi.org/10.5141/ecoenv.2013.217
  11. Klaassen R.H., B.J. Ens, J. Shamoun-Baranes, K.M. Exo, and F. Bairlein, 2011. Migration strategy of a flight generalist, the Lesser Black-backed Gull Larus fuscus. Behavioral Ecology 23(1): 58-68. https://doi.org/10.1093/beheco/arr150
  12. Kubota R., T. Kunito, S. Tanabe, H. Ogi and Y. Shibata. 2002. Maternal transfer of arsenic to eggs of black-tailed gull (Larus crassirostris) from Rishiri Island, Japan. Applied Organometallic Chemistry 16(8): 463-468. https://doi.org/10.1002/aoc.322
  13. Kumar S., M. Nei, J. Dudley and K. Tamura. 2008. MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Briefings in bioinformatics 9(4): 299-306. https://doi.org/10.1093/bib/bbn017
  14. Kumar S., K. Tamura and M. Nei. 1994. MEGA: molecular evolutionary genetics analysis software for microcomputers. Computer applications in the biosciences: CABIOS 10(2): 189-191.
  15. Kwon Y.S., D.W. Kim, W.S. Lee, I.K. Kwon, W.K. Paek and J.C. Yoo. 2007. Birds of Hongdo Island used as a breeding or stopover site in Korea. The Korean Journal of Ornithology 14(1): 51-60.
  16. Kwon Y.S., H.S. Lee and J.C. Yoo. 2006. Clutch size and reproductive success of Black-tailed gulls (Larus crassirosrtis) at Hongdo Island, Southeast Coast of South Korea. Ocean and Polar Research 28(2): 201-207. https://doi.org/10.4217/OPR.2006.28.2.201
  17. Lee J., J. Lee, H. Jang, J.H. Park and K. Shim. 2017. Preliminary study of DDT's variablity depending on the egg-laying order of Black-tailed Gull (Larus crssirostris) breeding at Baengnyeongdo, South Korea. The Korean Journal of Ornithology 24(2): 41-51 (In Korean with English title and abstract). https://doi.org/10.30980/KJO.2017.12.24.2.41
  18. Librado P. and J. Rozas. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25(11): 1451-1452. https://doi.org/10.1093/bioinformatics/btp187
  19. Mallory M.L., S.A. Robinson, C.E. Hebert and M.R. Forbes. 2010. Seabirds as indicators of aquatic ecosystem conditions: a case for gathering multiple proxies of seabird health. Marine Pollution Bulletin 60(1): 7-12. https://doi.org/10.1016/j.marpolbul.2009.08.024
  20. Seif S., J.F. Provencher, S. Avery-Gomm, P.Y. Daoust, M.L. Mallory and P.A. Smith. 2018. Plastic and non-plastic debris ingestion in three gull species feeding in an urban landfill environment. Archives of environmental contamination and toxicology 74(3): 349-360. https://doi.org/10.1007/s00244-017-0492-8
  21. Stover B.C. and K.F. Muller. 2010. TreeGraph 2: combining and visualizing evidence from different phylogenetic analyses. BMC bioinformatics 11(1): 7. https://doi.org/10.1186/1471-2105-11-7
  22. Swofford D.L. 2002. PAUP. Phylogenetic Analysis Using Parsimony (and other methods). Version 4.0b10. Sunderland, USA, Sinauer Associates.
  23. Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123(3): 585-595.
  24. Thompson J.D., D.G. Higgins and T.J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic acids research 22(22): 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  25. Yoo J.C. 1998. An ecological study of the Black-tailed gull on the Hongdo and Rahndo islets, designated as natural monuments. National Research Foundation of Korea Report. 27pp.