DOI QR코드

DOI QR Code

Expression of Sodium-Iodide Symporter Depending on Mutational Status and Lymphocytic Thyroiditis in Papillary Thyroid Carcinoma

  • Song, Young Shin (Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine) ;
  • Park, Young Joo (Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine)
  • Received : 2018.04.17
  • Accepted : 2018.06.29
  • Published : 2018.11.30

Abstract

Background and Objectives: Sodium-iodine symporter (NIS) is a marker for the degree of differentiation in thyroid cancer. The genetic factors or microenvironment surrounding tumors can affect transcription of NIS. In this study, we investigated the NIS mRNA expression according to mutational status and coexistent lymphocytic thyroiditis in papillary thyroid cancer (PTC). Materials and Methods: The RNA expression levels of NIS in the samples from database of The Caner Genome Atlas (TCGA; n=494) and our institute (n=125) were analyzed. Results: The PTCs with the $BRAF^{V600E}$ mutation and the coexistence of $BRAF^{V600E}$ and TERT promoter mutations showed significantly lower expression of NIS (p<0.001, respectively), and those with BRAF-like molecular subtype also had reduced expression of NIS (p<0.001). NIS expression showed a positive correlation with thyroid differentiation score (r=0.593, p<0.001) and negative correlations with expressions of genes involved in ERK signaling (r=-0.164, p<0.001) and GLUT-1 gene (r=-0.204, p<0.001). The PTCs with lymphocytic thyroiditis showed significantly higher NIS expression (p=0.013), regardless of mutational status. Conclusion: The NIS expression was reduced by the $BRAF^{V600E}$ mutation and MAPK/ERK pathway activation, but restored by the presence of lymphocytic thyroiditis.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea

References

  1. Schlumberger M, Lacroix L, Russo D, Filetti S, Bidart JM. Defects in iodide metabolism in thyroid cancer and implications for the follow-up and treatment of patients. Nat Clin Pract Endocrinol Metab 2007;3(3):260-9. https://doi.org/10.1038/ncpendmet0449
  2. Spitzweg C, Bible KC, Hofbauer LC, Morris JC. Advanced radioiodine-refractory differentiated thyroid cancer: the sodium iodide symporter and other emerging therapeutic targets. Lancet Diabetes Endocrinol 2014;2(10):830-42. https://doi.org/10.1016/S2213-8587(14)70051-8
  3. Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell 2014;159(3):676-90. https://doi.org/10.1016/j.cell.2014.09.050
  4. Yoo SK, Lee S, Kim SJ, Jee HG, Kim BA, Cho H, et al. Comprehensive analysis of the transcriptional and mutational landscape of follicular and papillary thyroid cancers. PLoS Genet 2016;12(8):e1006239. https://doi.org/10.1371/journal.pgen.1006239
  5. Song YS, Lim JA, Choi H, Won JK, Moon JH, Cho SW, et al. Prognostic effects of TERT promoter mutations are enhanced by coexistence with BRAF or RAS mutations and strengthen the risk prediction by the ATA or TNM staging system in differentiated thyroid cancer patients. Cancer 2016;122(9):1370-9. https://doi.org/10.1002/cncr.29934
  6. Lazar V, Bidart JM, Caillou B, Mahe C, Lacroix L, Filetti S, et al. Expression of the Na+/I- symporter gene in human thyroid tumors: a comparison study with other thyroid-specific genes. J Clin Endocrinol Metab 1999;84(9):3228-34. https://doi.org/10.1210/jcem.84.9.5996
  7. Durante C, Puxeddu E, Ferretti E, Morisi R, Moretti S, Bruno R, et al. BRAF mutations in papillary thyroid carcinomas inhibit genes involved in iodine metabolism. J Clin Endocrinol Metab 2007;92(7):2840-3. https://doi.org/10.1210/jc.2006-2707
  8. Kim S, Chung JK, Min HS, Kang JH, Park DJ, Jeong JM, et al. Expression patterns of glucose transporter-1 gene and thyroid specific genes in human papillary thyroid carcinoma. Nucl Med Mol Imaging 2014;48(2):91-7. https://doi.org/10.1007/s13139-013-0249-x
  9. Dong H, Shen WZ, Yan YJ, Yi JL, Zhang L. Effects of BRAF(V600E) mutation on Na(+)/I(-) symporter expression in papillary thyroid carcinoma. J Huazhong Univ Sci Technolog Med Sci 2016;36(1):77-81. https://doi.org/10.1007/s11596-016-1545-3
  10. Chakravarty D, Santos E, Ryder M, Knauf JA, Liao XH, West BL, et al. Small-molecule MAPK inhibitors restore radioiodine incorporation in mouse thyroid cancers with conditional BRAF activation. J Clin Invest 2011;121(12):4700-11. https://doi.org/10.1172/JCI46382
  11. Ricarte-Filho JC, Ryder M, Chitale DA, Rivera M, Heguy A, Ladanyi M, et al. Mutational profile of advanced primary and metastatic radioactive iodine-refractory thyroid cancers reveals distinct pathogenetic roles for BRAF, PIK3CA, and AKT1. Cancer Res 2009;69(11):4885-93. https://doi.org/10.1158/0008-5472.CAN-09-0727
  12. Ho AL, Grewal RK, Leboeuf R, Sherman EJ, Pfister DG, Deandreis D, et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. N Engl J Med 2013;368(7):623-32. https://doi.org/10.1056/NEJMoa1209288
  13. Rothenberg SM, Daniels GH, Wirth LJ. Redifferentiation of iodine-refractory BRAF V600E-mutant metastatic papillary thyroid cancer with dabrafenib-response. Clin Cancer Res 2015;21(24):5640-1. https://doi.org/10.1158/1078-0432.CCR-15-2298
  14. Wang W, Larson SM, Tuttle RM, Kalaigian H, Kolbert K, Sonenberg M, et al. Resistance of [18f]-fluorodeoxyglucose-avid metastatic thyroid cancer lesions to treatment with high-dose radioactive iodine. Thyroid 2001;11(12):1169-75. https://doi.org/10.1089/10507250152741028
  15. Robbins RJ, Wan Q, Grewal RK, Reibke R, Gonen M, Strauss HW, et al. Real-time prognosis for metastatic thyroid carcinoma based on 2-[18F]fluoro-2-deoxy-D-glucose-positron emission tomography scanning. J Clin Endocrinol Metab 2006;91(2):498-505. https://doi.org/10.1210/jc.2005-1534
  16. Feine U, Lietzenmayer R, Hanke JP, Held J, Wohrle H, Muller-Schauenburg W. Fluorine-18-FDG and iodine-131-iodide uptake in thyroid cancer. J Nucl Med 1996;37(9):1468-72.
  17. Loh KC, Greenspan FS, Dong F, Miller TR, Yeo PP. Influence of lymphocytic thyroiditis on the prognostic outcome of patients with papillary thyroid carcinoma. J Clin Endocrinol Metab 1999;84(2):458-63. https://doi.org/10.1210/jcem.84.2.5443
  18. Kim EY, Kim WG, Kim WB, Kim TY, Kim JM, Ryu JS, et al. Coexistence of chronic lymphocytic thyroiditis is associated with lower recurrence rates in patients with papillary thyroid carcinoma. Clin Endocrinol (Oxf) 2009;71(4):581-6. https://doi.org/10.1111/j.1365-2265.2009.03537.x
  19. Lang BH, Chai YJ, Cowling BJ, Min HS, Lee KE, Youn YK. Is BRAFV600E mutation a marker for central nodal metastasis in small papillary thyroid carcinoma? Endocr Relat Cancer 2014;21(2):285-95. https://doi.org/10.1530/ERC-13-0291
  20. Jeong JS, Kim HK, Lee CR, Park S, Park JH, Kang SW, et al. Coexistence of chronic lymphocytic thyroiditis with papillary thyroid carcinoma: clinical manifestation and prognostic outcome. J Korean Med Sci 2012;27(8):883-9. https://doi.org/10.3346/jkms.2012.27.8.883
  21. Lee JH, Kim Y, Choi JW, Kim YS. The association between papillary thyroid carcinoma and histologically proven Hashimoto's thyroiditis: a meta-analysis. Eur J Endocrinol 2013;168(3):343-9. https://doi.org/10.1530/EJE-12-0903
  22. Marotta V, Guerra A, Zatelli MC, Uberti ED, Di Stasi V, Faggiano A, et al. BRAF mutation positive papillary thyroid carcinoma is less advanced when Hashimoto's thyroiditis lymphocytic infiltration is present. Clin Endocrinol (Oxf) 2013;79(5):733-8. https://doi.org/10.1111/cen.12194
  23. Kim SK, Woo JW, Lee JH, Park I, Choe JH, Kim JH, et al. Chronic lymphocytic thyroiditis and BRAF V600E in papillary thyroid carcinoma. Endocr Relat Cancer 2016;23(1):27-34. https://doi.org/10.1530/ERC-16-0335

Cited by

  1. Radio-Iodide Treatment: From Molecular Aspects to the Clinical View vol.13, pp.5, 2018, https://doi.org/10.3390/cancers13050995