DOI QR코드

DOI QR Code

Growth and nutrient bioextraction of Gracilaria chorda, G. vermiculophylla, Ulva prolifera, and U. compressa under hypo- and hyper-osmotic conditions

  • Wu, Hailong (Department of Marine Science, College of Natural Sciences, Incheon National University) ;
  • Shin, Sook Kyung (Department of Marine Science, College of Natural Sciences, Incheon National University) ;
  • Jang, Sojin (Department of Marine Science, College of Natural Sciences, Incheon National University) ;
  • Yarish, Charles (Department of Ecology and Evolutionary Biology, University of Connecticut) ;
  • Kim, JangKyun (Department of Marine Science, College of Natural Sciences, Incheon National University)
  • 투고 : 2018.08.01
  • 심사 : 2018.11.13
  • 발행 : 2018.12.15

초록

The present study was to determine the effects of salinity on the growth and nutrient bioextraction abilities of Gracilaria and Ulva species, and to determine if these seaweeds can be used for nutrient bioextraction under hypo- and / or hyperosmotic conditions. Two Gracilaria species, G. chorda and G. vermiculophylla, and two Ulva species, U. prolifera and U. compressa, were cultured at various salinity conditions (5, 10, 15, 20, 30, 40, and 50 psu) for 3 weeks. Results showed that the growth rates, nutrient uptake, tissue nutrient contents and nutrient removal were significantly affected by salinity and species. All four species were euryhaline with the highest growth rates at 20 psu. Among the four species, U. prolifera, U. compressa, and G. vermiculophylla showed potential to be used for nutrient bioextraction in estuaries and / or land-based fish farms due to their rapid growth, high nutrient uptake, high tissue carbon and nitrogen accumulation and removal capacities.

키워드

참고문헌

  1. Abreu, M. H., Pereira, R., Buschmann, A. H., Sousa-Pinto, I. & Yarish, C. 2011. Nitrogen uptake responses of Gracilaria vermiculophylla (Ohmi) Papenfuss under combined and single addition of nitrate and ammonium. J. Exp. Mar. Biol. Ecol. 407:190-199. https://doi.org/10.1016/j.jembe.2011.06.034
  2. Abreu, M. H., Varela, D. A., Henriquez, L., Villarroel, A., Yarish, C., Sousa-Pinto, I. & Buschmann, A. H. 2009. Traditional vs. integrated multi-trophic aquaculture of Gracilaria chilensis C. J. Bird, J. McLachlan & E. C. Oliveira: productivity and physiological performance. Aquaculture 293:211-220. https://doi.org/10.1016/j.aquaculture.2009.03.043
  3. Angell, A. R., Mata, L., de Nys, R. & Paul, N. A. 2015. Indirect and direct effects of salinity on the quantity and quality of total amino acids in Ulva ohnoi (Chlorophyta). J. Phycol. 51:536-545. https://doi.org/10.1111/jpy.12300
  4. Biebl, R. 1962. Seaweeds. In Lewin, R. A. (Ed.) Physiology and Biochemistry of the Algae. Academic Press, New York, pp. 799-815.
  5. Bird, C. J. & McLachlan, J. 1986. The effect of salinity on distribution of species Gracilaria Grev. (Rhodophyta, Gigartinales): an experimental assessment. Bot. Mar. 29: 231-238.
  6. Bird, N. L., Chen, L. C. M. & McLachlan, J. 1979. Effects of temperature, light and salinity on growth in culture of Chondrus crispus, Furcellaria lumbricalis, Gracilaria tikvahiae (Gigartinales, Rhodophyta), and Fucus serratus (Fucales, Phaeophyta). Bot. Mar. 22:521-527.
  7. Boeuf, G. & Payan, P. 2001. How should salinity influence fish growth? Comp. Biochem. Physiol. C Pharmacol. Toxicol. Endocrinol. 130:411-423. https://doi.org/10.1016/S1532-0456(01)00268-X
  8. Buschmann, A. H., Varela, D. A., Hernandez-Gonzalez, M. C. & Huovinen, P. 2008. Opportunities and challenges for the development of an integrated seaweed-based aquaculture activity in Chile: determining the physiological capabilities of Macrocystis and Gracilaria as biofilters. J. Appl. Phycol. 20:571-577. https://doi.org/10.1007/s10811-007-9297-x
  9. Choi, H. G., Kim, Y. S., Kim, J. H., Lee, S. J., Park, E. J., Ryu, J. & Nam, K. W. 2006. Effects of temperature and salinity on the growth of Gracilaria verrucosa and G. chorda, with the potential for mariculture in Korea. J. Appl. Phycol. 18:269-277. https://doi.org/10.1007/s10811-006-9033-y
  10. Choi, T. S., Kang, E. J., Kim, J. -H. & Kim, K. Y. 2010. Effect of salinity on growth and nutrient uptake of Ulva pertusa (Chlorophyta) from an eelgrass bed. Algae 25:17-26. https://doi.org/10.4490/algae.2010.25.1.017
  11. Chopin, T., Robinson, S. M. C., Troell, M., Neori, A., Buschmann, A. H. & Fang, J. 2008. Ecological Engineering: Multi-trophic integration for sustainable marine aquaculture. In Jorgensen, S. E. & Fath, B. D. (Eds.) Encyclopedia of Ecology. Vol. 3. Elsevier, Amsterdam, pp. 2463-2475.
  12. Chung, I. K., Kang, Y. H., Yarish, C., Kraemer, G. P. & Lee, J. A. 2002. Application of seaweed cultivation to the bioremediation of nutrient-rich effluent. Algae 17:187-194. https://doi.org/10.4490/ALGAE.2002.17.3.187
  13. Corey, P., Kim, J. K., Duston, J. & Garbary, D. J. 2014. Growth and nutrient uptake by Palmaria palmata integrated with Atlantic halibut in a land-based aquaculture system. Algae 29:35-45. https://doi.org/10.4490/algae.2014.29.1.035
  14. Corey, P., Kim, J. K., Duston, J., Garbary, D. J. & Prithiviraj, B. 2013. Bioremediation potential of Palmaria palmata and Chondrus crispus (Basin Head): effect of nitrate and ammonium ratio as nitrogen source on nutrient removal. J. Appl. Phycol. 25:1349-1358. https://doi.org/10.1007/s10811-013-9977-7
  15. Dawes, C. J., Orduna-Rojas, J. & Robledo, D. 1999. Response of the tropical red seaweed Gracilaria cornea to temperature, salinity and irradiance. J. Appl. Phycol. 10:419-425.
  16. El-Mezayen, M. M., Rueda-Roa, D. T., Essa, M. A., Muller-Karger, F. E. & Elghobashy, A. E. 2018. Water quality observations in the marine aquaculture complex of the Deeba Triangle, Lake Manzala, Egyptian Mediterranean coast. Environ. Monit. Assess. 190:436. https://doi.org/10.1007/s10661-018-6800-6
  17. Ferrol-Schulte, D., Gorris, P., Baitoningsih, W., Adhuri, D. S. & Ferse, S. C. A. 2015. Coastal livelihood vulnerability to marine resource degradation: a review of the Indonesian national coastal and marine policy framework. Mar. Policy 52:163-171. https://doi.org/10.1016/j.marpol.2014.09.026
  18. Food and Agriculture Organization of the United Nations. 2018. The state of world fisheries and aquaculture. Available from: http://www.fao.org/fishery/en. Accessed Jul 14, 2018.
  19. Gorman, L., Kraemer, G. P., Yarish, C., Boo, S. M. & Kim, J. K. 2017. The effects of temperature on the growth and nitrogen content of invasive Gracilaria vermiculophylla and native Gracilaria tikvahiae from Long Island Sound, USA. Algae 32:57-66. https://doi.org/10.4490/algae.2017.32.1.30
  20. Huo, Y., Han, H., Hua, L., Wei, Z., Yu, K., Shi, H., Kim, J. K., Yarish, C. & He, P. 2016. Tracing the origin of green macroalgal blooms based on the large scale spatio-temporal distribution of Ulva microscopic propagules and settled mature Ulva vegetative thalli in coastal regions of the Yellow Sea, China. Harmful Algae 59:91-99. https://doi.org/10.1016/j.hal.2016.09.005
  21. Hurd, C. L., Harrison, P. J., Bischof, K. & Lobban, C. S. 2014. Seaweed ecology and physiology. 2nd ed. Cambridge University Press, Cambridge, 562 pp.
  22. Karsten, U. 2012. Seaweed acclimation to salinity and desiccation stress. In Wiencke, C. & Bischof, K. (Eds.) Seaweed Biology: Novel Insights into Ecophysiology, Ecology and Utilization. Springer, Berlin, pp. 87-107.
  23. Kim, J. K., Kottuparambil, S., Moh, S. H., Lee, T. K., Kim, Y. -J., Rhee, J. -S., Choi, E. -M., Yu, Y. J., Yarish, C. & Han, T. 2015a. Potential applications of nuisance microalgal blooms. J. Appl. Phycol. 27:1223-1234. https://doi.org/10.1007/s10811-014-0410-7
  24. Kim, J. K., Kraemer, G. P., Neefus, C. D., Chung, I. K. & Yarish, C. 2007. Effects of temperature and ammonium on growth, pigment production and nitrogen uptake by four species of Porphyra (Bangiales, Rhodophyta) native to the New England coast. J. Appl. Phycol. 19:431-440. https://doi.org/10.1007/s10811-006-9150-7
  25. Kim, J. K., Kraemer, G. P. & Yarish, C. 2014. Field scale evaluation of seaweed aquaculture as a nutrient bioextraction strategy in Long Island Sound and the Bronx River Estuary. Aquaculture 433:148-156. https://doi.org/10.1016/j.aquaculture.2014.05.034
  26. Kim, J. K., Kraemer, G. P. & Yarish, C. 2015b. Use of sugar kelp aquaculture in Long Island Sound and the Bronx River Estuary for nutrient extraction. Mar. Ecol. Prog. Ser. 531:155-166. https://doi.org/10.3354/meps11331
  27. Kim, J. K., Yarish, C., Hwang, E. K., Park, M. & Kim, Y. 2017. Seaweed aquaculture: cultivation technologies, challenges and its ecosystem services. Algae 32:1-13. https://doi.org/10.4490/algae.2017.32.3.3
  28. Kim, J. K., Yarish, C. & Pereira, R. 2016. Tolerances to hypoosmotic and temperature stresses in native and invasive species of Gracilaria (Rhodophyta). Phycologia 55:257-264. https://doi.org/10.2216/15-90.1
  29. Kourafalou, V. H., Lee, T. N., Oey, L. -Y. & Wang, J. D. 1996. The fate of river discharge on the continental shelf: 2. Transport of coastal low-salinity waters under realistic wind and tidal forcing. J. Geophys. Res. 101:3435-3455. https://doi.org/10.1029/95JC03025
  30. Kraemer, G. P., Carmona, R., Chopin, T., Neefus, C., Tang, X. & Yarish, C. 2004. Evaluation of the bioremediatory potential of several species of the red alga Porphyra using short-term measurements of nitrogen uptake as a rapid bioassay. J. Appl. Phycol. 16:489-497. https://doi.org/10.1007/s10811-004-5511-2
  31. Lapointe, B. E., Rice, D. L. & Lawrence, J. M. 1984. Responses of photosynthesis, respiration, growth, and cellular constituents to hypo-osmotic short in the red alga, Gracilaria tikvahiae. Comp. Biochem. Physiol. Part A Physiol. 77:127-132. https://doi.org/10.1016/0300-9629(84)90023-9
  32. Lartigue, J., Neill, A., Hayden, B. L., Pulfer, J. & Cebrian, J. 2003. The impact of salinity fluctuations on net oxygen production and inorganic nitrogen uptake by Ulva lactuca (Chlorophyceae). Aquat. Bot. 75:339-350. https://doi.org/10.1016/S0304-3770(02)00193-6
  33. Latimer, J. S., Tedesco, M. A., Swanson, R. L., Yarish, C., Stacey, P. E. & Garza, C. 2014. Long Island sound: prospects for the urban sea. Springer, New York, 558 pp.
  34. Liu, J. W. & Dong, S. L. 2001. Comparative study on utilizing nitrogen capacity between two macroalgae Gracilaria tenuistipitata var. liui (Rhodophyta) and Ulva pertusa (Chlorophyta). I. Nitrogen storage under nitrogen enrichment and starvation. J. Environ. Sci. 13:318-322.
  35. Macler, B. A. 1988. Salinity effects on photosynthesis, carbon allocation and nitrogen assimilation in the red alga, Gelidium coulteri. Plant Physiol. 88:690-694. https://doi.org/10.1104/pp.88.3.690
  36. Mariscal-Lagarda, M. M. & Paez-Osuna, F. 2014. Mass balances of nitrogen and phosphorus in an integrated culture of shrimp (Litopenaeus vannamei) and tomato (Lycopersicon esculentum Mill) with low salinity groundwater: a short communication. Aquac. Eng. 58:107-112. https://doi.org/10.1016/j.aquaeng.2013.12.003
  37. Mariscal-Lagarda, M. M., Paez-Osuna, F., Esquer-Mendez, J. L., Guerrero-Monroy, I., del Vivar, A. R. & Felix-Gastelum, R. 2012. Integrated culture of white shrimp (Litopenaeus vannamei) and tomato (Lycopersicon esculentum Mill) with low salinity groundwater: management and production. Aquaculture 366-367:76-84. https://doi.org/10.1016/j.aquaculture.2012.09.003
  38. Martinez-Aragon, J. F., Hernandez, I., Perez-Llorens, J. L., Vazquez, R. & Vergara, J. J. 2002. Biofiltering efficiency in removal of dissolved nutrients by three species of estuarine macroalgae cultivated with sea bass (Dicentrarchus labrax) waste waters 1. Phosphate. J. Appl. Phycol. 14:365-374. https://doi.org/10.1023/A:1022134701273
  39. McGlathery, K. J., Pedersen, M. F. & Borum, J. 1996. Changes in intracellular nitrogen pools and feedback controls on nitrogen uptake in Chaetomorpha linum (Chlorophyta). J. Phycol. 32:393-401. https://doi.org/10.1111/j.0022-3646.1996.00393.x
  40. McLachlan, J. & Bird, C. J. 1984. Geographical and experimental assessment of the distribution of Gracilaria species (Rhodophyta: Gigartinales) in relation to temperature. Helgol. Meeresunters. 38:319-334. https://doi.org/10.1007/BF02027684
  41. Neori, A., Msuya, F. E., Shauli, L., Schuenhoff, A., Kopel, F. & Shpigel, M. 2003. A novel three-stage seaweed (Ulva lactuca) biofilter design for integrated mariculture. J. Appl. Phycol. 15:543-553. https://doi.org/10.1023/B:JAPH.0000004382.89142.2d
  42. Ott, F. D. 1965. Synthetic media and techniques for the xenic cultivation of marine algae and flagellate. Va. J. Sci. 16:205-218.
  43. Qu, L., Xu, J., Sun, J., Li, X. & Gao, K. 2017. Diurnal pH fluctuations of seawater influence the responses of an economic red macroalga Gracilaria lemaneiformis to future $CO_2$-induced seawater acidification. Aquaculture 473:383-388. https://doi.org/10.1016/j.aquaculture.2017.03.001
  44. Rose, J. M., Bricker, S. B., Deonarine, S., Ferreira, J. G., Getchis, T., Grant, J., Kim, J. K., Krumholz, J. S., Kraemer, G. P., Stephenson, K., Wikfors, G. H. & Yarish, C. 2015. Nutrient bioextraction. In Meyers, R. A. (Ed.) Encyclopedia of Sustainability Science and Technology. Springer Press, New York, pp. 1-33.
  45. Roy, L. A., Davis, D. A., Saoud, I. P., Boyd, C. A., Pine, H. J. & Boyd, C. E. 2010. Shrimp culture in inland low salinity waters. Rev. Aquac. 2:191-208. https://doi.org/10.1111/j.1753-5131.2010.01036.x
  46. Rueness, J. 2005. Life history and molecular sequences of Gracilaria vermiculophylla (Gracilariales, Rhodophyta), a new introduction to European waters. Phycologia 44:120-128. https://doi.org/10.2216/0031-8884(2005)44[120:LHAMSO]2.0.CO;2
  47. Russell, G. 1987. Salinity and seaweed vegetation. In Crawford, R. M. M. (Ed.) Plant Life in Aquatic and Amphibious Habitats. Blackwell Scientific, Oxford, pp. 35-52.
  48. Satoh, K., Smith, C. M. & Fork, D. C. 1983. Effects of salinity on primary processes of photosynthesis in the red Porphyra perforata. Plant Physiol. 73:643-647. https://doi.org/10.1104/pp.73.3.643
  49. Tedesco, M. A., Swanson, R. L., Stacey, P. E., Latimer, J. S., Yarish, C. & Garza, C. 2014. Synthesis for management. In Latimer, J. S., Tedesco, M. A., Swanson, R. L., Yarish, C., Stacey, P. E. & Garza, C. (Eds.) Long Island Sound: Prospects for the Urban Sea. Springer, New York, pp. 481-539.
  50. Trimmer, M., Nedwell, D. B., Sivyer, D. B. & Malcolm, S. J. 2000. Seasonal organic mineralisation and denitrification in intertidal sediments and their relationship to the abundance of Enteromorpha sp. and Ulva sp. Mar. Ecol. Prog. Ser. 203:67-80. https://doi.org/10.3354/meps203067
  51. Weinberger, F., Buchholz, B., Karez, R. & Wahl, M. 2008. The invasive red alga Gracilaria vermiculophylla in the Baltic Sea: adaptation to brackish water may compensate for light limitation. Aquat. Biol. 3:251-264. https://doi.org/10.3354/ab00083
  52. Wu, H., Huo, Y., Han, F., Liu, Y. & He, P. 2015. Bioremediation using Gracilaria chouae co-cultured with Sparus macrocephalus to manage the nitrogen and phosphorous balance in an IMTA system in the Xiangshan bay, China. Mar. Pollut. Bull. 91:272-279. https://doi.org/10.1016/j.marpolbul.2014.11.032
  53. Wu, H., Kim, J. K., Huo, Y., Zhang, J. & He, P. 2017. Nutrient removal ability of seaweeds on Pyropia yezoensis aquaculture rafts in China's radial sandbanks. Aquat. Bot. 137:72-79. https://doi.org/10.1016/j.aquabot.2016.11.011
  54. Wu, H., Zhang, J., Yarish, C., Kim, J. K., He, P. & Jim, J. K. 2018. Bioremediation and nutrient migration during blooms of Ulva in the Yellow Sea, China. Phycologia 57:223-231. https://doi.org/10.2216/17-32.1
  55. Xiao, J., Zhang, X., Gao, C., Jiang, M., Li, R., Wang, Z., Li, Y., Fan, S. & Zhang, X. 2016. Effect of temperature, salinity and irradiance on growth and photosynthesis of Ulva prolifera. Acta Oceanol. Sin. 35:1141-21.
  56. Yang, Y. -F., Fei, X. -G., Song, J. -M., Hu, H. -Y., Wang, G. -C. & Chung, I. K. 2006. Growth of Gracilaria lemaneiformis under different cultivation conditions and its effects on nutrient removal in Chinese coastal waters. Aquaculture 254:248-255. https://doi.org/10.1016/j.aquaculture.2005.08.029
  57. Yarish, C. & Edwards, P. 1982. A field and cultural investigation of the horizontal and seasonal distribution of estuarine red algae of New Jersey. Phycologia 21:112-124. https://doi.org/10.2216/i0031-8884-21-2-112.1
  58. Yarish, C., Edwards, P. & Casey, A. S. 1979a. A culture study of salinity responses in ecotypes of two estuarine red algae. J. Phycol. 15:341-346. https://doi.org/10.1111/j.1529-8817.1979.tb00703.x
  59. Yarish, C., Edwards, P. & Casey, S. 1979b. Acclimation responses to salinity of three estuarine red algae from New Jersey. Mar. Biol. 51:289-294. https://doi.org/10.1007/BF00386809
  60. Yarish, C., Edwards, P. & Casey, S. 1980. The effects of salinity, calcium and potassium variations on the growth of two estuarine red algae. J. Exp. Mar. Biol. Ecol. 47:235-249. https://doi.org/10.1016/0022-0981(80)90041-6
  61. Yu, Z., Zhu, X., Jiang, Y., Luo, P. & Hu, C. 2014. Bioremediation and fodder potentials of two Sargassum spp. in coastal waters of Shenzhen, South China. Mar. Pollut. Bull. 85:797-802. https://doi.org/10.1016/j.marpolbul.2013.11.018
  62. Zhang, J., Kim, J. K., Yarish, C. & He, P. 2016. The expansion of Ulva prolifera O.F. Müller macroalgal blooms in the Yellow Sea, PR China, through asexual reproduction. Mar. Pollut. Bull. 104:101-106. https://doi.org/10.1016/j.marpolbul.2016.01.056
  63. Zheng, X., Duan, Y., Dong, H. & Zhang, J. 2017. Effects of dietary Lactobacillus plantarum in different treatments on growth performance and immune gene expression of white shrimp Litopenaeus vannamei under normal condition and stress of acute low salinity. Fish Shellfish Immunol. 62:195-201. https://doi.org/10.1016/j.fsi.2017.01.015
  64. Zhou, Y., Yang, H., Hu, H., Liu, Y., Mao, Y., Zhou, H., Xu, X. & Zhang, F. 2006. Bioremediation potential of the macroalga Gracilaria lemaneiformis (Rhodophyta) integrated into fed fish culture in coastal waters of north China. Aquaculture 252:264-276. https://doi.org/10.1016/j.aquaculture.2005.06.046

피인용 문헌

  1. Comparative Transcriptome Analysis Provides Insights into Response of Ulva compressa to Fluctuating Salinity Conditions vol.57, pp.4, 2021, https://doi.org/10.1111/jpy.13167