Improving Strontium Isotope Ratio Analysis Using MC-ICP-MS

다검출기 유도결합 플라즈마 질량분석기를 이용한 스트론튬 동위원소비 분석법 개선

  • Lee, Sin-Woo (Environmental Measurement and Analysis Center, National Institute of Environmental Research) ;
  • Park, Jaeseon (Environmental Measurement and Analysis Center, National Institute of Environmental Research) ;
  • Park, Hyun-Woo (Environmental Measurement and Analysis Center, National Institute of Environmental Research) ;
  • Hwang, Jong Yeon (Environmental Measurement and Analysis Center, National Institute of Environmental Research) ;
  • Kim, Kumhee (Environmental Measurement and Analysis Center, National Institute of Environmental Research) ;
  • Chung, Hyun-Mi (Environmental Measurement and Analysis Center, National Institute of Environmental Research) ;
  • Choi, Jong-Woo (Environmental Measurement and Analysis Center, National Institute of Environmental Research)
  • 이신우 (국립환경과학원 환경측정분석센터) ;
  • 박재선 (국립환경과학원 환경측정분석센터) ;
  • 박현우 (국립환경과학원 환경측정분석센터) ;
  • 황종연 (국립환경과학원 환경측정분석센터) ;
  • 김금희 (국립환경과학원 환경측정분석센터) ;
  • 정현미 (국립환경과학원 환경측정분석센터) ;
  • 최종우 (국립환경과학원 환경측정분석센터)
  • Received : 2018.10.12
  • Accepted : 2018.11.26
  • Published : 2018.12.31

Abstract

Strontium (Sr) commonly exists in rock, groundwater, soil, plants, and animals. The Sr isotope ratio offers important information as a tracer on nature because the Sr isotopic composition is not fractionated by any biological process in these ecosystems. Hence, Sr isotope ratio has been used in several studies on tracing the Sr source for contaminated sites and human migration. In this study, we developed a separation method for Sr content, and then improved Sr isotope analysis using multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). A powdered rock standard (NIST 2710a) was used to determine the removal of interference elements (Rb and Ca) and the recovery rate of Sr content. The results ranged from 98% to 106%. Additionally, three standard samples (NBS 987, IAPSO and NIST 1486) were analyzed to evaluate the precision and accuracy of the results. The measured $^{87}Sr/^{86}Sr$ ratio for all the samples were consistent with the reported values, within an error. These results indicate that our established Sr separation and Sr isotope measurement methods are reliable and can hence be useful in the fields of environmental and forensic sciences.

Keywords

Acknowledgement

Grant : 환경 다매체 오염원 추적자 탐색 및 현장 적용기법 마련 연구(III)

Supported by : 국립환경과학원(NIER)

References

  1. G. Faure, "Principles of isotope geology", New York: Wiley, 1986, 589.
  2. T. D. Price, L. Manzanilla, and W. D. Middleton, "Immigration and the ancient city of Teotihuacan in Mexico: A study using strontium isotope ratios in human bone and teeth", Journal of Archaeological Science, 2000, 27, 903-913. https://doi.org/10.1006/jasc.1999.0504
  3. C. D. Frost, B. N. Pearson, K. M. Ogle, E. L. Heffern, and R. M. Lyman, "Sr isotope tracing of aquifer interactions in an area of accelerating coal-bed methane production, Powder River Basin, Wyoming", Geology, 2002, 30, 923-926. https://doi.org/10.1130/0091-7613(2002)030<0923:SITOAI>2.0.CO;2
  4. P. Budd, A. Millard, C. Chenery, S. Lucy, and C. Roberts, “Investigating poplulation movement by stable isotope analysis: A report from Britain”, Antiquity, 2004, 78, 127-141. https://doi.org/10.1017/S0003598X0009298X
  5. L. E. Wright, “In search of Yax Nuun Ayiin I”, Acnient Mesoamerica, 2005, 16, 89-100. https://doi.org/10.1017/S0956536105050054
  6. T. D. Price, J. Wahl, and R. A. Bentley, "Isotopic evidence for mobility and group organization among Neolithic farmers at Talheim, Germany, 500 BC", European Journal of Archaeology, 2006, 9, 259-284. https://doi.org/10.1177/1461957107086126
  7. E. K. Thornton, S. D. Defrance, J. Krigbaum, and P. R. Williams, "Isotopic evidence for Middle Horizon to 16th century camelid herding in the Osmore Valley, Peru", International Journal of Osteoarchaeology, 2011, 21, 544-567. https://doi.org/10.1002/oa.1157
  8. J. M. Kenoyer, T. D. Price, and J. H. Burton, “A new approach to tracking connections between the Indus Valley and Mesopotamia: Initial results of strontium isotope analyses from Harappa and Ur”, Journal of Archaeological Science, 2013, 40, 2286-2297. https://doi.org/10.1016/j.jas.2012.12.040
  9. J. D. Blum, E. H. Taliaferro, M. T. Weisse, and R. T. Holmes, "Changes in Sr/Ca, Ba/Ca and $^{87}Sr/^{86}Sr$ ratios between trophic levels in two forest ecosystems in the northeastern USA", Biogeochemistry, 2000, 49, 87-101. https://doi.org/10.1023/A:1006390707989
  10. E. Petelet-Giraud, Ph. Negrel, and J. Casanova, “Variability of Sr-87/Sr-86 in water draining granite revealed after a double correction for atmospheric and anthropogenic inputs”, Hydrological Sciences Journal, 2003, 48, 729-742. https://doi.org/10.1623/hysj.48.5.729.51448
  11. M. Barbieri, T. Boschetti, M. Petitta, and M. Tallini, "Stable isotope ($^2H$, $^{18}O$ and $^{87}Sr/^{86}Sr$) and hydrochemistry monitoring for groundwater hydrodynamics analysis in a karst aquifer (Gran Sasso, Central Italy)", Applied Geochemistry, 2005, 20, 2063-2081. https://doi.org/10.1016/j.apgeochem.2005.07.008
  12. D. L. Phillips and J. W. Gregg, “Source partitioning using stable isotopes: coping with too many sources”, Oecologia, 2003, 136, 261-269. https://doi.org/10.1007/s00442-003-1218-3
  13. L. N. Christian, J. L. Banner, and L. E. Mack, "Sr isotopes as tracers of anthropogenic influence on stream water in the Austin, Texas, area", Chemical Geology, 2011, 282, 84-97. https://doi.org/10.1016/j.chemgeo.2011.01.011
  14. Z. E. Peterman, J. Thamke, K. Futa, and T. Preston, "Strontium isotope systematics of mixing groundwater and oil-field brine at Goose Lake in northeastern Montana, USA", Applied Geochemistry, 2012, 27, 2403-2408. https://doi.org/10.1016/j.apgeochem.2012.08.004
  15. M. Zielinski, J. Dopieralska, Z. Belka, A. Walczak, M. Siepak, and M. Jakubozicz, “Sr isotope tracing of multiple water soures in a complex river system”, Science of the Total Environment, 2016, 548, 307-316.
  16. A. Nigro, G. Sappa, and M. Barbieri, “Strontium isotope as tracers of groundwater contamination”, Procedia Earth and Planetary Science, 2017, 17, 352-355. https://doi.org/10.1016/j.proeps.2016.12.089
  17. K. Szostek, K. Madrzyk, and B. Cienkosz-Stepanczak, "Strontium isotopes as an indicator of human migration - easy questions, different answers", Anthropological Review, 2015, 78, 133-156. https://doi.org/10.1515/anre-2015-0010
  18. B. L. Beard and C. M. Johnson, “Strontium isotope composition of skeletal material can betermine the birth place and geographic mobility of humans and animals”, Journal of Forensic Science, 2000, 45, 1049-1061.
  19. B. K. Neoson, M. J. DeNiro, M. J. Schoeninger, D. J. DePaolo, and P. E. Hare, "Effects of diagenesis on strontium, carbon, nitrogen, and oxygen concentration and isotopic concentration of bone", Geochimica et Cosmochimica Acta, 1986, 50, 1941-1949. https://doi.org/10.1016/0016-7037(86)90250-4
  20. J. A. Ezzo, C. M. Johnson, and T. D. Price, “Analytical perspectives on prehistoric migration: A case study from east-central Arizona”, Journal of Archaeological Science, 1997, 24, 447-466. https://doi.org/10.1006/jasc.1996.0129
  21. G. Fortunato, K. Mumic, S. Wuderli, L. Pillonel, J. O. Bosset, and G. Gremaud, “Application of strontium isotope abundance ratios measured by MC-ICP-MS for food authentication”, Journal of Analytical Atomic Spectrometry, 2004, 19, 227-234. https://doi.org/10.1039/b307068a
  22. A. Y. Kramchaninov, I. V. Chernyshev, and K. N. Shatagin, "Isotope analysis of strontium by multicollector inductively-coupled plasma mass spectrometry: High-precision combined measurement of $^{88}Sr/^{86}Sr$ and $^{87}Sr/^{86}Sr$ isotope ratios", Journal of Analytical Chemistry, 2012, 67, 1084-1092. https://doi.org/10.1134/S1061934812140067
  23. S. W. Lee, J. S. Ryu, and K. S. Lee, "Magnesium isotope geochemistry in the Han River, South Korea", Chemical Geology, 2014, 364, 9-19. https://doi.org/10.1016/j.chemgeo.2013.11.022
  24. B. Y. Song, J. S. Ryu, H. S. Shin, and K. S. Lee, "Determination of the source of bioavailable Sr using $^{87}Sr/^{86}Sr$ tracer: A case study of hot pepper and rice", Journal of Agricultural and Food Chemistry, 2014, 62, 9232-9238. https://doi.org/10.1021/jf503498r
  25. M. Weber, F. Lugli, K. P. Jochum, A. Cipriani, and D. Scholz, “Calcium carbonate and phosphate reference materials for monitoring bulk and microanalytical determination of Sr isotopes”, Geostandards and Geoanalytical Research, 2017, 42, 77-89.