Source Identification and Trends in Atmospheric Particulate-bound Mercury at Seoul and Baengnyeong, South Korea

서울과 백령도의 대기 중 입자상 수은의 분포 특성 및 발생원 추정연구

  • Noh, Seam (Division of Chemical Research, National Institute of Environmental Research) ;
  • Park, Kwang-Su (Division of Chemical Research, National Institute of Environmental Research) ;
  • Kim, Hyuk (Division of Chemical Research, National Institute of Environmental Research) ;
  • Yu, Seok-Min (Division of Chemical Research, National Institute of Environmental Research) ;
  • Lim, Yong-Jae (Division of Air Quality, National Institute of Environmental Research) ;
  • Lee, Min-Do (Division of Air Quality, National Institute of Environmental Research) ;
  • Seok, Kwang-Seol (Division of Chemical Research, National Institute of Environmental Research) ;
  • Kim, Younghee (Division of Chemical Research, National Institute of Environmental Research)
  • 노샘 (국립환경과학원 화학물질연구과) ;
  • 박광수 (국립환경과학원 화학물질연구과) ;
  • 김혁 (국립환경과학원 화학물질연구과) ;
  • 유석민 (국립환경과학원 화학물질연구과) ;
  • 임용재 (국립환경과학원 대기환경연구과) ;
  • 이민도 (국립환경과학원 대기환경연구과) ;
  • 석광설 (국립환경과학원 화학물질연구과) ;
  • 김영희 (국립환경과학원 화학물질연구과)
  • Received : 2018.10.17
  • Accepted : 2018.11.13
  • Published : 2018.12.31

Abstract

$PM_{2.5}$-bound mercury (PBM) was monitored at weekly intervals for three years (from 2014 to 2016) at an urban (Seoul) and rural site (Baengnyeong) in South Korea. The average PBM concentrations in $PM_{2.5}$ samples over the entire sampling period were $12{\pm}11pg/m^3$ and $36{\pm}34pg/m^3$ for Baengnyeong and Seoul, respectively. Seasonal differences were pronounced, with concentrations being highest in winter due to local meteorological conditions (high gas-particle coefficient due to low temperature and low mixing layer height in winter) as well as seasonal factors, such as coal combustion for heating purposes in China. In Baengnyeong, the significant positive correlation of PBM with $PM_{2.5}$, air pollutants, and heavy metals suggested that coal combustion in China might be the most important source of ambient mercury in Korea. In winter, no correlation of PBM with $PM_{2.5}$, air pollutants, and heavy metals was seen in Seoul. Furthermore, Seoul showed higher $PBM/PM_{2.5}$ and $Pb/PM_{2.5}$ ratios in winter due to the strong atmospheric oxidation-reduction reaction conditions as well as local and regional PBM sources. We conclude that immediate attention must be given to addressing PBM levels in Korea, including considering it as a key component of future air quality monitoring activities and mitigation measures.

Keywords

Acknowledgement

Supported by : 국립환경과학원

References

  1. UNEP, "Global mercury assessment", Tech. rep., 2002, Geneva, Switzerland.
  2. 국립환경과학원, "수은에 관한 미나마타협약 안내서", 2016.
  3. AMAP/UNEP, "Technical background report for the global mercury assessment 2013", Artic Monitoring and Assessment Programme/UNEP Chemicals Branch, 2013, Geneva, Switzerland.
  4. E. G. Pacyna, J. M. Pacyna, F. Steenhuisen, and S. Wilson, “Global anthropogenic mercury emission inventory for 2000”, Atmospheric Environment, 2006, 40, 4048-4063. https://doi.org/10.1016/j.atmosenv.2006.03.041
  5. W. H. Schroeder and J. Munthe, “Atmospheric mercuryan overview”, Atmospheric Environment, 1998, 32, 809-822. https://doi.org/10.1016/S1352-2310(97)00293-8
  6. J. D. Shannon and E. C. Voldner, “Modeling atmospheric concentrations of mercury and deposition to the Great Lakes”, Atmospheric Environment, 1995, 29, 1649-1661. https://doi.org/10.1016/1352-2310(95)00075-A
  7. L. Duan, X. Wang, D. Wang, Y. Duan, N. Cheng, and G. Xiu, "Atmospheric mercury speciation in Shanghai, China", Science of the Total Environment, 2017, 578, 460-468. https://doi.org/10.1016/j.scitotenv.2016.10.209
  8. J. Guo, S. Kang, J. Huang, Q. Zhang, M. Rupakheti, S. Sun, and L. Tripathee et al., "Characterizations of atmospheric particulate-bound mercury in the Kathmandu Valley of Nepal, South Asia", Science of the Total Environment, 2017, 579, 1240-1248. https://doi.org/10.1016/j.scitotenv.2016.11.110
  9. P. R. Kim, Y. J. Han, T. M. Holsen, and S. M. Yi, “Atmospheric particulate mercury: concentrations and size distributions”, Atmospheric Environment, 2012, 61, 94-102. https://doi.org/10.1016/j.atmosenv.2012.07.014
  10. B. Pal and P. A. Ariya, "Gas-phase HO-initiated reactions of elemental mercury: kinetics, product studies, and atmospheric implications", Environmental Science and Technology, 2004, 38, 5555-5566. https://doi.org/10.1021/es0494353
  11. J. A. Schmidt, D. J. Jacob, H. M. Horowitz, T. Sherwen, and M. J. Evans et al., "Modeling the observed tropospheric BrO background: importance of multiphase chemistry and implications for ozone, OH, and mercury", Journal of Geophysical Research, 2016, 121, 11819-11835.
  12. G. S. Lee, P. R. Kim, Y. J. Han, T. M. Holsen, Y. S. Seo, and S. M. Yi, “Atmospheric speciated mercury concentrations on an island between China and Korea: sources and transport pathways”, Atmospheric Chemistry and Physics, 2016, 16, 4119-4133. https://doi.org/10.5194/acp-16-4119-2016
  13. Y. M. Park, K. S. Park, H. Kim, S. M. Yu, S. Noh, M. S. Kim, and J. Y. Kim et al., "Characterizing isotopic compositions of TC-C, NO3-N, and NH4-N in $PM_{2.5}$ in South Korea: Impact of China's winter heating", Environmental Pollution, 2018, 233, 735-744. https://doi.org/10.1016/j.envpol.2017.10.072
  14. G. C. Fang, C. T. Lo, C. Y. Huang, Y. J. Zhuang, M. H. Cho, K. H. Tsai, and Y. F. Xiao, "$PM_{2.5}$ particulates and particulate-bound mercury Hg(p) concentrations in a mixed urban, residential, traffic-heavy, and industrial site", Environmental Forensics, 2017, 18, 178-187. https://doi.org/10.1080/15275922.2017.1340363
  15. 기상청 날씨누리, www.weather.go.kr, 2018년 10월.
  16. 환경부 에어코리아, www.airkorea.or.kr, 2018년 10월.
  17. R. R. Draxler and G. D. Hess, "NOAA technical memorandum ERL ARL-224: Description of the HYSPLIT_4 modeling system", 2004, Available at www.arl.noaa.gov/ documents/reports/arl-224.pdf.
  18. N. Cheng, L. Duan, G. Xiu, M. Zhao, and G. Qian, "Comparison of atmospheric PM2.5-bound mercury species and their correlation with bromine and iodine at coastal urban and island sites in the eastern China", Atmospheric Research, 2017, 183, 17-25. https://doi.org/10.1016/j.atmosres.2016.08.009
  19. H. Yamasaki, K. Kuwata, and H. Miyamoto, "Effects of ambient-temperature on aspects of airborne polycyclic aromatic hydrocarbons. Environmental Science and Technology, 1981, 16, 189-194.
  20. J. F. Pankow, “Review and comparative analysis of the theories on partitioning between the gas and aerosol particulate phases in the atmosphere”, Atmospheric Environment, 1987, 21, 2275-2283. https://doi.org/10.1016/0004-6981(87)90363-5
  21. N. J. Schleicher, J. Schafer, G. Blanc, Y. Chen, F. Chai, K. Cen, and S. Norra, “Atmospheric particulate mercury in the megacity Beijing: spatio-temporal variations and source apportionment”, Atmospheric Environment, 2015, 109, 251-261. https://doi.org/10.1016/j.atmosenv.2015.03.018
  22. X. W. Fu, H. Zhang, B. Yu, Z. Wang, C.-J. Lin, and Z. B. Feng, “Observations of atmospheric mercury in China: a critical review”, Atmospheric Chemistry and Physics, 2015, 15, 9455-9476. https://doi.org/10.5194/acp-15-9455-2015
  23. UNEP, "Final review of scientific information on lead", 2010, Geneva, Switzerland.
  24. P. Siudek, M. Frankowski, and J. Siepak, “Atmospheric particulate mercury at the urban and forest sites in central Poland”, Environmental Science and Pollution Research, 2016, 23, 2341-2352. https://doi.org/10.1007/s11356-015-5476-5
  25. R. Das, X. Wang, B. Khezri, R. D. Webster, P. K. Sikdar, and S. Datta, "Mercury isotopes of atmospheric particle bound mercury for source apportionment study in urban Kolkata, India", Elementa: Science of the Anthropocene, 2016, 4, 1-12.
  26. B. Liu, G. J. Keeler, J. T. Dvonch, J. A. Barres, M. M. Lynam, F. J. Marsik, and J. T. Morgan, “Temporal variability of mercury speciation in urban air”, Atmospheric Environment, 2007, 41, 1911-1923. https://doi.org/10.1016/j.atmosenv.2006.10.063
  27. X. Song, I. Cheng, and J. Lu, "Annual atmospheric mercury species in Downtown Toronto, Canada", Journal of Environmental Monitoring, 2009, 11, 660-669. https://doi.org/10.1039/b815435j
  28. H. D. Choi, J. Huang, S. Mondal, and T. M. Holsen, “Variation in concentrations of three mercury (Hg) forms at a rural and a suburban site in New York State”, Science Total Environment, 2013, 448, 96-106. https://doi.org/10.1016/j.scitotenv.2012.08.052
  29. S. H. Kim, Y. J. Han, T. M. Holsen, and S. M. Yi, "Characteristics of atmospheric speciated mercury concentrations (TGM, Hg(II) and Hg(p)) in Seoul, Korea", Atmospheric Environment, 2009, 43, 3267-3274. https://doi.org/10.1016/j.atmosenv.2009.02.038