Abstract
In the industrial wastewater that occupies a large proportion of river pollution, the wastewater generated in textile, leather, and plating industries is hardly decomposable. Though dyeing wastewater has generally been treated using chemical and biological methods, its characteristics cause treatment efficiencies such as chemical oxygen demand (COD) and suspended solids (SS) to be reduced only in the activated sludge method. Currently, advanced oxidation technology for the treatment of dyeing wastewater is being developed worldwide. Electro-coagulation is highly adapted to industrial wastewater treatment because it has a high removal efficiency and a short processing time regardless of the biodegradable nature of the contaminant. In this study, the effects of the current density and the electrolyte condition on the COD removal efficiency in dyeing wastewater treatment by using electro-coagulation were tested with an aluminum anode and a stainless steel cathode. The results are as follows: (1) When the current density was adjusted to $20A/m^2$, $40A/m^2$, and $60A/m^2$ under the condition without electrolyte, the COD removal efficiency at 60 min was 62.3%, 72.3%, and 81.0%, respectively. (2) The removal efficiency with NaCl addition was 7.9% higher on average than that with non-addition at all current densities. (3) The removal efficiency with $Na_2SO_4$ addition was 4.7% higher on average than that with non-addition at all current densities.