Development of cobalt encased in nitrogen and sulfur co-doped carbon nanotube for non-precious metal catalyst toward oxygen reduction reaction

  • Kim, Tae-Hyun (Department of Chemical Engineering, Hanyang University) ;
  • Sang, Byoung-In (Department of Chemical Engineering, Hanyang University) ;
  • Yi, Sung-Chul (Department of Chemical Engineering, Hanyang University)
  • Published : 2018.12.01

Abstract

In this paper, cobalt embedded in nitrogen and sulfur co-doped carbon nanotubes (CoNSTs) were synthesized for oxygen reduction reaction (ORR) catalysts. The CoNSTs were prepared through a facile heat treatment method without any templates. Different amounts of the metal salt were employed to examine the physicochemical and electrochemical properties of the CoNSTs. The CoNSTs showed the bamboo-like tube morphology with the encased Co nanoparticles in the tubes. Through the x-ray photoelectron spectroscopy analysis, the catalysts exhibited different chemical states of the nitrogen and sulfur species. As a result, the CoNST performed high activity toward the ORR in an acidic condition with the onset potential of 0.863 V (vs. reversible hydrogen electrode). It was clearly demonstrated from the electrochemical characterizations that the quality of the nitrogen and sulfur species significantly influences the ORR activity rather than the total amount of the dopants.

Keywords

Acknowledgement

Supported by : Korea Institute of Energy Technology Evaluation and Planning (KETEP)

References

  1. B.C.H. Steele and A. Heinzel. Nature 414[6861] (2001) 345-352. https://doi.org/10.1038/35104620
  2. C.M. Sanchez-Sanchez, and A.J. Bard. Anal. Chem. 81[19] (2009) 8094-8100. https://doi.org/10.1021/ac901291v
  3. Y. Bing, H. Liu, L. Zhang, D. Ghosh, and J. Zhang. Chem. Soc. Rev. 39[6] (2010) 2184-2202. https://doi.org/10.1039/b912552c
  4. G. Wu, K.L. More, C.M. Johnston, and P. Zelenay. Science 332[6028] (2011) 443-447. https://doi.org/10.1126/science.1200832
  5. C.H. Choi, S.H. Park, and S.I. Woo. Appl. Catal. B Environ. 119-120 [30] (2012) 123-131. https://doi.org/10.1016/j.apcatb.2012.02.031
  6. Z. Zhao, M. Li, L. Zhan, L. Dai, and Z. Xia. Adv. Mater. 27[43] (2015) 6834-6840. https://doi.org/10.1002/adma.201503211
  7. J. Liang, Y. Jiao, M. Jaroniec, and S.Z. Qiao. Angew. Chem. Int. Ed. 51[46] (2012) 11496-11500. https://doi.org/10.1002/anie.201206720
  8. C.H. Choi, S.H. Park, and S.I. Woo. ACS Nano 6[8] (2012) 7084-7091. https://doi.org/10.1021/nn3021234
  9. C.H. Choi, M.W. Chung, Y.J. Jun, and S.I. Woo. RSC Adv. 3[30] (2013) 12417-12422. https://doi.org/10.1039/c3ra41160e
  10. J. Shi, X. Zhou, P. Xu, J. Qiao, Z. Chen, and Y. Liu. Electrochim. Acta. 145[1] (2014) 259-269. https://doi.org/10.1016/j.electacta.2014.08.091
  11. K. Hu, L. Tao, D. Liu, J. Huo, and S. Wang. ACS Appl. Mater. Interfaces 8[30] (2016) 19379-19385. https://doi.org/10.1021/acsami.6b02078
  12. Z. Zhao and Z. Xia. ACS Catal. 6[3] (2016) 1553-1558. https://doi.org/10.1021/acscatal.5b02731
  13. Y. Tang, B.L. Allen, D.R. Kauffman, and A. Star. J. Am. Chem. Soc. 131[37] (2009) 13200-13201. https://doi.org/10.1021/ja904595t
  14. G. Wu, M. Nelson, S. Ma, H. Meng, G. Cui, and P.K. Shen. Carbon 49[12] (2011) 3972-3982. https://doi.org/10.1016/j.carbon.2011.05.036
  15. Z. Wen, S. Ci, F. Zhang, X. Feng, S. Cui, S. Mao, S. Luo, Z. He, and J. Chen. Adv. Mater. 24[11] (2012) 1399-1404. https://doi.org/10.1002/adma.201104392
  16. S. Fu, C. Zhu, H. Li, D. Du, and Y. Lin. J. Mater. Chem. A 3[24] (2015) 12718-12722. https://doi.org/10.1039/C5TA01293G
  17. X. Wang, Q. Li, H. Pan, Y. Lin, Y. Ke, H. Sheng, M.T. Swihart, and G. Wu. Nanoscale 7[47] (2015) 20290-20298. https://doi.org/10.1039/C5NR05864C
  18. T.H. Kim, C.Y. Jung, R. Bose, and S.C. Yi. Carbon 139 (2018) 656-665. https://doi.org/10.1016/j.carbon.2018.07.031
  19. J. Zhu, K. Li, M. Xiao, C. Liu, Z. Wu, J. Ge, and W. Xing. J. Mater. Chem. A 4[19] (2016) 7422-7429. https://doi.org/10.1039/C6TA02419J
  20. Z. Wang, S. Peng, Y. Hu, L. Li, T. Yan, G. Yang, D. Ji, M. Srinivasan, Z. Pan, and S. Ramakrishna. J. Mater. Chem. A 5[10] (2017) 4949-4961. https://doi.org/10.1039/C6TA10291C
  21. Q. Li, R. Cao, J. Cho, and G. Wu. Adv. Energy Mater. 4[6] (2014) 1301415-1301433. https://doi.org/10.1002/aenm.201301415
  22. R.A. Sidik, A.B. Anderson, N.P. Subramanian, S.P. Kumaraguru, and B.N. Popov. J. Phys. Chem. B 110[4] (2006) 1787-1793. https://doi.org/10.1021/jp055150g
  23. F. Studt. Catal. Lett. 143[1] (2013) 58-60. https://doi.org/10.1007/s10562-012-0918-x