Effects of additives and sintering temperature on phase evolution and properties of carbon-clay ceramic composites

  • Aramide, Fatai Olufemi (Department of Metallurgical and Materials Engineering, Federal University of Technology) ;
  • Adepoju, O.D. (Department of Metallurgical and Materials Engineering, Federal University of Technology) ;
  • Popoola, Abimbola Patricia (Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology)
  • Published : 2018.12.01

Abstract

Effects of additives on phase development and physico-mechanical properties of mullite-carbon was investigated. Powdered clay, kaolinite and graphite of predetermined compositions were blended with additives using ball mill for 3 hrs at 60 rev/min. Samples were produced by uniaxial compression and sintered between $1400^{\circ}C$ and $1600^{\circ}C$ for one hr. They were characterized for various properties, developed phases and microstructural features. It was observed that the properties and phase developments in the samples were influenced by the additives. 10 wt % SiC served as nucleating point for SiC around $1400^{\circ}C$. 10wt % $TiO_2$ lead to development of 2.5 wt % TiC at $1500^{\circ}C$ which increased to 6.8 wt % at $1600^{\circ}C$. Ifon clay in the sample leads to development of anorthite and microcline in the samples. 10wt % $TiO_2$ is effective as anti-oxidant for graphite up to $1500^{\circ}C$. Base on strength and absorbed energy, sample C (with 10wt % $TiO_2$) sintered at $1500^{\circ}C$ is considered to be optimum.

Keywords

References

  1. F.O. Aramide, K.K. Alaneme, P.A. Olubambi, J.O. Borode, Int. J. of Mater. and Chem. 5[6] (2015) 127-139.
  2. F.O. Aramide and S.O. Seidu, J. of Min. and Mater. Character. and Eng. 1 (2013) 75-79.
  3. W.D. Callister, "Materials science and engineering: an introduction" (John Wiley & Sons Inc. 2007) p. 447.
  4. L. Dag and M. Annette, "Advanced Materials and Structures and their Fabrication Processes" (Narvik University College HiN, 2007) p. 55, 61
  5. I.M. Low, R.D. Skala, D.S. Perera, J. of Mater. Sc. Lett. 13 (1994) 1334-1336. https://doi.org/10.1007/BF00624487
  6. A. Asadi, A.S. Vanini, A. Jabbari, Int. J. of the Phy. Sci. 6[22] (2011) 5253-5260.
  7. A.R. Moradkhani, H.R. Baharvandi, A. Vafaeesefat, M. Tajdari, Int. J. Adv. Design and Man. Tech., 5[3] (2012) 99-105.
  8. N.A. Yahya, R.I. Todd, J. Eur. Ceram. Soc. 32 (2012) 4003-4007. https://doi.org/10.1016/j.jeurceramsoc.2012.07.003
  9. I. Akin, G. Goller, Research and Innovation in Carbon Nanotube-Based Composites, (2015) Dr. Brahim Attaf (Ed.), ISBN 978-0-9889190-1-3, WAP-AMSA.
  10. I.V.Antoniac, (Ed.), Handbook of Bioceramics and Biocomposites, (Switzerland: Springer International Publishing, 2015) p. 54.
  11. S.C. Tjong, Carbon Nanotube Reinforced Composites Metal and Ceramic Matrices, (Weinheim Germany: Wiley-Vch Verlag GmbH & Co, 2009) p. 45.
  12. J.W. Wen-Chang, H.C. Kao, M.H. Lo, J. Eur. Ceram. Soc. 16 (1996) 239-247. https://doi.org/10.1016/0955-2219(95)00157-3
  13. S. Maitra, S. Pal, S. Nath, A. Pandey, and R. Lodha, Ceram. Int. 28 (2002) 819-826. https://doi.org/10.1016/S0272-8842(02)00048-2
  14. N. Claussen, M. Ruhle, Design of Transformation-Toughened Ceramics, in Science and Technology of Zirconia III, Advances in Ceramics, vol. 24, (Am. Ceram. Soc., OH 1988) 137.
  15. Dong Xiu-zhen, Wang Yi?ming, Li Yue. J. China Ceram. 44[1] (2008) 7-10.
  16. T. Ebadzadeh, E. Ghasemi, Ceram. Int. 28 (2002) 447-450. https://doi.org/10.1016/S0272-8842(01)00117-1
  17. J.S. Moya, P. Miranzo, M.I. Osendi, Mater. Sci. and Eng. AI09 (1989) 139-145.
  18. F.O. Aramide, I.B. Akintunde, P.A. Popoola, Acta Technica Coviniensis-Bull. of Eng. 10[4] (2017) 121-130.
  19. F.O. Aramide, I.B. Akintunde, Acta Technica Coviniensis-Bull. of Eng. 10[3] (2017) 99-106.
  20. F.O. Aramide, I.B. Akintunde, Leo. Elect. J. Prac. & Tech. 16[31] (2017) 45-58.
  21. F.O. Aramide, I.B. Akintunde and A. Oyetunji, Usak University J. Mater. Sci. (2016) 25-42.
  22. F.O. Aramide, K.K. Alaneme, P.A. Olubambi, J.O. Borode, Leo. Elect. J. Prac. & Tech. 13[25] (2014) 46-57.
  23. F.O. Aramide, K.K. Alaneme, P.A. Olubambi, J.O. Borode, Faculty Engineering Hunedoara-Int. J. of Eng. 7[4] (2014) 343-352.
  24. F. O. Aramide, Leonardo J. of Sc. 14[26] (2015) 67-82.
  25. ASTM C373-18 Standard Test Methods for Determination of Water Absorption and Associated Properties by Vacuum Method for Pressed Ceramic Tiles and Glass Tiles and Boil Method for Extruded Ceramic Tiles and Non-tile Fired Ceramic Whiteware Products.
  26. ASTM C133-97 Standard Test Methods for Cold Crushing Strength and Modulus of Rupture of Refractories, ASTM International (2003).
  27. S.K. Sadrnezhaad, Z.A. Nemati, S. Mahshid, S. Hosseini, B. Hashemi, J. Am. Ceram. Soc. 90[2] (2007) 509-515. https://doi.org/10.1111/j.1551-2916.2006.01391.x
  28. S.K. Sadrnezhaad, S. Mahshid, B. Hashemi, Z.A. Nemati, J. Am. Ceram. Soc. 89[4] (2006) 1308-1316. https://doi.org/10.1111/j.1551-2916.2005.00863.x
  29. Z. Nemati, S. Sadrnezhaad and H.R.A. Mooghari, Refractories Applications & News 10[6] (2005) 17-23.
  30. C.W. Forrest, P. Kennedy, J.V. Shennan, Special Ceramics. 5 (1972) 99.
  31. P. Kennedy, "Non-Oxide Technical and Engineering Ceramics" Hampshire, S. Ed. (Elsevier, New York, 1986) 301-317.
  32. G.R. Sawyer, T.F. Page, J. Mater. Sci. 13 (1978) 885. https://doi.org/10.1007/BF00570528
  33. J.N. Ness, T.F. Page, J. Mater. Sci. 21 (1986) 1377. https://doi.org/10.1007/BF00553278
  34. J. Roy, S. Chandra, S. Das, S. Maitra, Adv. Mater. Sci. 38 (2014) 29-39.
  35. M. Auweter-Kurtz, G. Hilfer, H. Habiger, K. Yamawaki, T. Yoshinaka, H.D. Speckmann, Acta Astronau. 45 (1999) 93. https://doi.org/10.1016/S0094-5765(99)00114-9
  36. M. Panneerselvam, K.J. Rao, Chemistry of Materials. 15[11] (2003) 2247-2252. https://doi.org/10.1021/cm0301423
  37. V. Viswabaskaran, F.D. Gnanam, M. Balasubramanian, J. Mater. Proc. Tech. 142[1] (2003) 275-281. https://doi.org/10.1016/S0924-0136(03)00577-6
  38. J. She, P. Mechnich, M. Schmucker, H. Schneider, Ceram. Int. 27[8] (2001) 847-852. https://doi.org/10.1016/S0272-8842(01)00039-6
  39. K. Srikrishna, G. Thomas, R. Martinez, M. P. Corral, S.D. Aza, J.S. Moya, J. Mater. Sci. 25 (1990) 607?612.
  40. H.Y. Zhang, H.Q. Wang, G.H. Chen, Plastics 35[4] (2006) 42-50.
  41. F. O. Aramide, J. Min. & Mater. Character. & Eng. 11 (2012) 970-975.
  42. M.I. Brasileiro, A.W.B. Rodrigues, R.R. Menezes, G.A. Neves, L.N.L. Santana, Mater. Sci. Forum 591-593 (2012) 117-143.
  43. D. Chandra, G.C. Das, U. Sengupta, S. Maitra, Ceramica 59 (2013) 487-494. https://doi.org/10.1590/S0366-69132013000300021