Study on properties of geopolymer-polyurethane sponge composite

  • Chen, Zhilei (Department of Advanced Materials Science and Engineering, Mokpo National University) ;
  • Lee, Sang-Jin (Department of Advanced Materials Science and Engineering, Mokpo National University)
  • Published : 2018.10.01

Abstract

A newly conceived geopolymer composite was fabricated by a combination of the geopolymer and polyurethane sponge. The density and porosity of hardened geopolymer composite, corresponded to different pore sizes of polyurethane sponge, exhibited no significant differences from each other. However, the mechanical behavior, the compressive strength and flexural strength, showed slight differences accordingly. Fracture of the geopolymer composite exposed to high compressive load was not observed from all specimens containing polyurethane sponge. The toughness enhancement of the geopolymer composite, due to spontaneous elasticity of polyurethane sponge, crack spread, and crack diffraction, was identified through the stress-strain curve and microstructure of fracture surface. The newly designed geopolymer composite having a 3-dimensional sponge skeleton showed relatively higher flexural strength of 8.0 MPa than other conventional geopolymer composites.

Keywords

References

  1. Y.K. Cho, G.D. Moon, J.M. La, and S.H. Jung, J. Kor. Concrete Inst. 26[4] (2014) 449-456. https://doi.org/10.4334/JKCI.2014.26.4.449
  2. G.T. Joo, T.K. Lee, M.P, and Y. Hwang, J. Am. Ceram. Soc. 49[6] (2012) 575-580.
  3. Y. Jun and J.E. Oh, J. Kor. Concrete Inst. 27[4] (2015) 443-450. https://doi.org/10.4334/JKCI.2015.27.4.443
  4. G.S. Ryu, K.T. Koh, and J.H. Lee, J. Rec. Const. Resources. 1[1] (2013) 35-41.
  5. J.G.S. Van Jaarsveld, J.S.J. Van Deventer, and L. Lorenzen, Miner. Eng. 10[7] (1996) 659-669. https://doi.org/10.1016/S0892-6875(97)00046-0
  6. E.M. An, Y.H. Cho, C.M. Chon, D.G. Lee, and S. Lee, J. Kor. Ceram. Soc. 52[4] (2015) 253-263. https://doi.org/10.4191/kcers.2015.52.4.253
  7. C.S. Jeon and T.W. Song, J. Kor. Ceram. Soc. 47[5] (2010) 381-386. https://doi.org/10.4191/KCERS.2010.47.5.381
  8. B.J. Kim, H.B. Choi, K.I. Kang, and C.K. Yi, J. Kor. Concrete Inst. 23[1] (2011) 121-127. https://doi.org/10.4334/JKCI.2011.23.1.121
  9. J.T. Kim, D.S. Seo, G.J. Kim, and J.K. Lee, J. Kor. Ceram. Soc. 47[3] (2010) 216-222. https://doi.org/10.4191/KCERS.2010.47.3.216
  10. J.T. Kim, D.S. Seo, G.J. Kim, and J.K. Lee, Kor. J. Mater. Res. 20[9] (2010) 488-493. https://doi.org/10.3740/MRSK.2010.20.9.488
  11. Y.K. Cho, G.D. Moon, J.M. La, and S.H. Jung, J. Kor. Concrete Inst. 26[4] (2014) 449-456. https://doi.org/10.4334/JKCI.2014.26.4.449
  12. J.H. Kim, I.T. Nam, H. Park, and K.N. Kim, J. Kor. Cryst. Growth Technol. 27[1] (2017) 47-56.
  13. T. Alomayri and I.M. Low, J. Asian Ceram. Soc. 1[1] (2013) 30-34. https://doi.org/10.1016/j.jascer.2013.01.002
  14. K. Sankar, R.A.S. Ribeiro, M.G.S. Ribeiro, and W.M. Kriven, J. Am. Ceram. Soc. 100[1] (2016) 49-55.
  15. A. Berzins, A. Morozovs, U. Gross, and J. Iejavs, Eng. Rural. Dvpt. 10[5] (2017) 24-26.