DOI QR코드

DOI QR Code

Experimental and theoretical investigation of micellization behavior of sodium dodecyl sulfate with cetyltrimethylammonium bromide in aqueous/urea solution at various temperatures

  • Hoque, Md. Anamul (Department of Chemistry, Jahangirnagar University) ;
  • Mahbub, Shamim (Department of Chemistry, Jahangirnagar University) ;
  • Rub, Malik Abdul (Chemistry Department, Faculty of Science, King Abdulaziz University) ;
  • Rana, Shahed (Department of Chemistry, Jahangirnagar University) ;
  • Khan, Mohammed Abdullah (Department of Chemistry, Jahangirnagar University)
  • Received : 2018.03.22
  • Accepted : 2018.07.17
  • Published : 2018.11.30

Abstract

Mixed micelle formation behavior of cationic surfactant-cetyltrimethylammonium bromide (CTAB) and anionic surfactant sodium dodecyl sulfate (SDS) in aqueous as well as in urea medium from 303.15 K to 323.15 K at 5 K interval was carried out by conductometric method. The differences between the experimental values of critical micelle concentrations (cmc) and ideal critical micelle concentrations ($cmc^{id}$) illustrate the interaction between the amphiphiles studied. The values of micellar mole fraction ($X_1^{Rub}$ (Rubingh), $X_1^M$ (Motomura), $X_1^{Rod}$ (Rodenas) and $X_1^{id}$(ideal) of surfactant CTAB determined by different proposed models and outcome indicate high involvement of CTAB in SDS-CTAB mixed micellization, which enhance by means of the augment of mole fraction of CTAB. The negative value of interaction parameter (${\beta}$) showed an attractive interaction involving CTAB and SDS. Activity coefficients were less than unity in all case, which also reveals the presence of interaction between CTAB & SDS. The negative ${\Delta}G^0_m$ values imply the spontaneous mixed micellization phenomenon. The attained values of ${\Delta}H^0_m$ were positive at inferior temperature, while negative at superior temperature. The negative ${\Delta}H^0_m$ values in urea ($NH_2CONH_2$) medium illustrate exothermic micellization process. The magnitudes of ${\Delta}S^0_m$ were positive in almost all cases. The excess free energy of mixed micelle formation (${\Delta}G_{ex}$) was found to be negative, which indicates the stability of mixed micelle as compared to the individual's components micelles.

Keywords

References

  1. J. H. Fendler, Membrane mimetic chemistry, Wiley, New York (1982).
  2. M. A. Rub, N. Azum and A. M. Asiri, Russian J. Phys. Chem. B, 10, 1007 (2016). https://doi.org/10.1134/S1990793116060257
  3. G.-H. Li and C.-G. Cho, Korean J. Chem. Eng., 25, 1444 (2008). https://doi.org/10.1007/s11814-008-0237-5
  4. S. Roy and J. Dey, J. Colloid Interface Sci., 290, 526 (2005). https://doi.org/10.1016/j.jcis.2005.04.071
  5. W. G. Cutler and E. Kissa, Detergency: Theory and practice, Marcel Dekker, New York (1987).
  6. J.-C. Kim, Korean J. Chem. Eng., 26, 1821 (2009). https://doi.org/10.1007/s11814-009-0268-6
  7. S. E. Friberg, Food emulsions, vol. 5, Marcel Dekker, New York (1976).
  8. M. J. Rosen, Surfactants and interfacial phenomena, 3rd Ed., Wiley, New York (2004).
  9. D. Kumar and M. A. Rub, J. Mol. Liq., 240, 253 (2017). https://doi.org/10.1016/j.molliq.2017.05.088
  10. M. A. Rub, N. Azum, F. Khan and A. M. Asiri, J. Chem. Thermodyn., 121, 199 (2018). https://doi.org/10.1016/j.jct.2018.02.019
  11. D. R. Robinson and W. P. Jencks, J. Am. Chem. Soc., 87, 2462 (1965). https://doi.org/10.1021/ja01089a028
  12. D. B. Wetlaufer, S. K. Malik, L. Stoller and R. L. Coffin, J. Am. Chem. Soc., 86, 508 (1964). https://doi.org/10.1021/ja01057a045
  13. O. Enea and C. Jolicoeur, J. Phys. Chem., 86, 3870 (1982). https://doi.org/10.1021/j100216a033
  14. A. Chakraborty, M. Sarkar and S. Basak, J. Colloid Interface Sci., 287, 312 (2005). https://doi.org/10.1016/j.jcis.2005.01.071
  15. M. A. Rub, F. Khan, D. Kumar and A. M. Asiri, Tenside Surf. Deterg., 52, 236 (2015). https://doi.org/10.3139/113.110371
  16. N. Azum, M. A. Rub, A. M. Asiri and W. A. Bawazeer, Colloids Surf., A, 522, 183 (2017). https://doi.org/10.1016/j.colsurfa.2017.02.093
  17. M. A. Rub, N. Azum and A. M. Asiri, J. Mol. Liq., 218, 595 (2016). https://doi.org/10.1016/j.molliq.2016.02.049
  18. N. Azum, M. A. Rub and A. M. Asiri, Chinese J. Chem. Eng., 26, 566 (2018). https://doi.org/10.1016/j.cjche.2017.09.009
  19. C. Treiner and A. Makayssi, Langmuir, 8, 794 (1992). https://doi.org/10.1021/la00039a012
  20. D. Kumar, M. A. Rub, N. Azum and A. M. Asiri, J. Phys. Org. Chem., 31, e3730 (2018). https://doi.org/10.1002/poc.3730
  21. T. R. Desai and S. G. Dixit, J. Colloid Interface Sci., 177, 471 (1996). https://doi.org/10.1006/jcis.1996.0060
  22. M. A. Rub, N. Azum, F. Khan and A. M. Asiri, J. Phys. Org. Chem., 30, e3676 (2017). https://doi.org/10.1002/poc.3676
  23. M. A. Rub, N. Azum and A. M. Asiri, J. Chem. Eng. Data, 62, 3216 (2017). https://doi.org/10.1021/acs.jced.7b00298
  24. N. Azum, M. A. Rub and A. M. Asiri, Colloids Surf., B, 121, 158 (2014). https://doi.org/10.1016/j.colsurfb.2014.06.009
  25. P. K. Jana and S. P. Moulik, J. Phys. Chem., 95, 9525 (1991). https://doi.org/10.1021/j100176a089
  26. M. J. Roden, H. Zhu and T. Gao, J. Colloid Interface Sci., 157, 254 (1993). https://doi.org/10.1006/jcis.1993.1183
  27. J. H. Clint, Surfactant aggregation, Blackie\Chapman and Hall, Glasgow, New York (1992).
  28. M. E. Haque, A. R. Das, A. K. Rakshit and S. P. Moulik, Langmuir, 12, 4084 (1996). https://doi.org/10.1021/la9403587
  29. J. L. Palous, M. Turmine and P. Letellier, J. Phys. Chem. B, 102, 5886 (1998).
  30. M. J. Rosen and D. Murphy, J. Colloid Interface Sci., 110, 224 (1986). https://doi.org/10.1016/0021-9797(86)90371-1
  31. D. Attwood and A. T. Florence, Surfactant systems: Their chemistry, pharmacy and biology, Chapman & Hall, New York (1983).
  32. P. H. Elworthy, A. T. Florence and G. B. Macfarlane, Solubilization by surface-active agents and its application in chemistry and biological sciences, Chapman and Hall, Suffolk (1968).
  33. M. A. Rub, N. Azum, S. B. Khan, H. M. Marwani and A. M. Asiri, J. Mol. Liq., 212, 532 (2015). https://doi.org/10.1016/j.molliq.2015.09.049
  34. M. A. Motin, M. A. H. Mia and A. K. M. N. Islam, J. Saudi Chem. Soc., 19, 172 (2015). https://doi.org/10.1016/j.jscs.2012.01.009
  35. T. P. Niraula, S. K. Shah, S. K. Chatterjee and A. Bhattarai, Karbala Int. J. Modern Sci., 4, 26 (2018). https://doi.org/10.1016/j.kijoms.2017.10.004
  36. C. C. Ruiz, Colloid Surf., A: Physicochem. Eng. Aspects, 147, 349 (1999). https://doi.org/10.1016/S0927-7757(98)00708-0
  37. D. Kumar, M. A. Rub, M. Akram and Kabir-ud-Din, Tenside Surf. Deterg., 51, 157 (2014). https://doi.org/10.3139/113.110296
  38. F. Akhtar, M. A. Hoque and M. A. Khan, J. Chem. Thermodyn., 40, 1082 (2008). https://doi.org/10.1016/j.jct.2008.03.001
  39. M. Rahman, M. A. Khan, M. A. Rub and M. A. Hoque, J. Mol. Liq., 223, 716 (2016). https://doi.org/10.1016/j.molliq.2016.08.049
  40. D. Kumar, M. A. Rub, M. Akram and Kabir-ud-Din, J. Colloid Interface Sci., 418, 324 (2014). https://doi.org/10.1016/j.jcis.2013.12.023
  41. R. Jha and J. C. Ahluwalia, J. Chem. Soc. Faraday Trans., 89, 3465 (1993). https://doi.org/10.1039/ft9938903465
  42. S. K. Han, S. M. Lee and H. Schott, J. Colloid Interface Sci., 126, 393 (1988). https://doi.org/10.1016/0021-9797(88)90138-5
  43. G. C. Kresheck, Water: A comprehensive treatise, vol. 4, F. Franks (Ed.), Plenum, New York (1975).
  44. K. Menguro, Y. Takasawa, N. Kawahashi, Y. Tabata and M. Ueno, J. Colloid Interface Sci., 83, 50 (1981). https://doi.org/10.1016/0021-9797(81)90008-4
  45. Kabir-ud-Din, U. S. Siddique, S. Sanjeev and A. A. Dar, Colloid Polym. Sci., 384, 807 (2006).
  46. C. C. Ruiz, L. Diaz-Lopez and J. Aguiar, J. Colloid Interface Sci., 305, 293 (2007). https://doi.org/10.1016/j.jcis.2006.09.074
  47. C. Das and B. Das, J. Chem. Eng. Data, 54, 559 (2009). https://doi.org/10.1021/je8005024
  48. S. Paria, Colloids Surf., A, 281, 113 (2006). https://doi.org/10.1016/j.colsurfa.2006.02.023
  49. J. H. Clint, J. Chem. Soc., Faraday Trans. I, 71, 1327 (1975). https://doi.org/10.1039/f19757101327
  50. M. R. Molla, M. A. Rub, A. Ahmad and M. A. Hoque, J. Mol. Liq., 238, 62 (2017). https://doi.org/10.1016/j.molliq.2017.04.061
  51. D. Kumar and M. A. Rub, J. Mol. Liq., 238, 389 (2017). https://doi.org/10.1016/j.molliq.2017.05.027
  52. A. Buckingham, C. J. Garve and G. G. Warr, J. Phys. Chem., 97, 10236 (1993). https://doi.org/10.1021/j100141a054
  53. K. M. Kale, E. L. Cussler and D. F. Evans, J. Phys. Chem., 84, 593 (1980). https://doi.org/10.1021/j100443a007
  54. A. Bandhopadhyay and S. P. Moulik, Colloid Polym. Sci., 266, 455 (1988). https://doi.org/10.1007/BF01457263
  55. Y. Moroi, Micelles: Theoretical and applied aspects, Plenium Press, New York (1992).
  56. M. A. Rub, A. M. Asiri, J. M. Khan, R. H. Khan and Kabir-ud-Din, J. Mol. Struct., 1050, 35 (2013). https://doi.org/10.1016/j.molstruc.2013.07.010
  57. V. Soldi, J. Keiper, L. S. Romsted, I. M. Cuccovia and H. Chaimovich, Langmuir, 16, 59 (2000). https://doi.org/10.1021/la990336q
  58. R. Zana, J. Colloid Interface Sci., 78, 330 (1980). https://doi.org/10.1016/0021-9797(80)90571-8
  59. N. Gorski and J. Kalus, Langmuir, 17, 4211 (2001). https://doi.org/10.1021/la0017882
  60. D. N. Rubingh, Mixed micelle solution, K. L. Mittal (Ed.), Solution Chemistry of Surfactants, vol. 1, Plenum, New York (1979).
  61. K. Motomura, M. Yamanaka and M. Aratono, Colloid Polym. Sci., 262, 948 (1984). https://doi.org/10.1007/BF01490027
  62. V. Rodenas, M. Valiente and M. S. Villafruela, J. Phys. Chem. B, 103, 4549 (1999). https://doi.org/10.1021/jp981871m
  63. H. Lange and K. H. Beck, Kolloid Z. Z. Polym., 251, 424 (1973). https://doi.org/10.1007/BF01498689
  64. M. A. Hoque, M.-O.-F. Patoary, M. M. Rashid, M. R. Molla and M. A. Rub, J. Solution Chem., 46, 682 (2017). https://doi.org/10.1007/s10953-017-0594-y
  65. T. Joshi, B. Bharatiya and K. Kuperkar, J. Dispersion Sci. Technol., 29, 351 (2008). https://doi.org/10.1080/01932690701716069
  66. Y. Moroi, J. Colloid Interface Sci., 122, 308 (1988). https://doi.org/10.1016/0021-9797(88)90366-9
  67. N. M. van Os, B. Smit and S. Karaborni, Red. Trav. Chim. PaysBas, 113, 181 (1994).
  68. C. Tanford, Proceedings of the National Academy of Science, 71, 1811 (1974). https://doi.org/10.1073/pnas.71.5.1811
  69. A. Ali, S. Uzair, N. A. Malik and M. Ali, J. Mol. Liq., 196, 395 (2014). https://doi.org/10.1016/j.molliq.2014.04.013
  70. J. J. H. Nusselder and J. B. F. N. Engberts, J. Colloid Interface Sci., 148, 353 (1992). https://doi.org/10.1016/0021-9797(92)90174-K
  71. D. Kumar and M. A. Rub, Tenside Surf. Deterg., 52, 464 (2015). https://doi.org/10.3139/113.110398
  72. Z. H. Ren, Y. Luo and D. P. Shi, Colloids Surf., A, 428, 18 (2013). https://doi.org/10.1016/j.colsurfa.2013.03.036
  73. Z. H. Ren, Y. Luo, Y. C. Zheng, D. P. Shi, P. Mei and F. S. Li, J. Solution Chem., 43, 853 (2014). https://doi.org/10.1007/s10953-014-0173-4
  74. Z. H. Ren, J. Ind. Eng. Chem., 20, 3649 (2014). https://doi.org/10.1016/j.jiec.2013.12.061
  75. J. H. Clint and T. J. Walker, J. Chem. Soc. Faraday Trans. I, 71, 946 (1975). https://doi.org/10.1039/f19757100946
  76. N. Azum, M. A. Rub and A. M. Asiri, J. Dispersion Sci. Technol., 38, 96 (2017). https://doi.org/10.1080/01932691.2016.1144197
  77. N. Azum, M. A. Rub and A. M. Asiri, J. Dispersion Sci. Technol., 38, 1785 (2017). https://doi.org/10.1080/01932691.2017.1283510
  78. M. A. Rub, N. Azum, A. M. Asiri, M. E. M. Zayed and A. O. AlYoubi, J. Phys. Org. Chem., 29, 476 (2016). https://doi.org/10.1002/poc.3570

Cited by

  1. Influence of NaCl/urea on the aggregation behavior of dodecyltrimethylammonium chloride and sodium dodecyl sulfate at varying temperatures and compositions: Experimental and theoretical approach vol.32, pp.4, 2018, https://doi.org/10.1002/poc.3917
  2. Micellization behavior of cationic and anionic surfactant mixtures at different temperatures: Effect of sodium carbonate and sodium phosphate salts vol.32, pp.9, 2018, https://doi.org/10.1002/poc.3967
  3. Critical Micelle Concentrations of Sodium Dodecyl Sulfate and Cetyltrimethylammonium Bromide Mixtures in Binary Mixtures of Various Salts at Different Temperatures and Compositions vol.93, pp.10, 2018, https://doi.org/10.1134/s0036024419100170
  4. Conductometric Study of Influence of Urea on Interactions of Sodium Dodecyl Sulfate with Cefradine vol.93, pp.12, 2019, https://doi.org/10.1134/s0036024419120276
  5. Influence of Different Additives on the Interaction of Quinolone Antibiotic Drug with Surfactant: Conductivity and Cloud Point Measurement Study vol.23, pp.2, 2018, https://doi.org/10.1002/jsde.12377
  6. Influence of the effect of different electrolytes on the interaction of promethazine hydrochloride drug with tetradecyltrimethylammonium bromide at different temperatures vol.33, pp.7, 2020, https://doi.org/10.1002/poc.4057
  7. Interaction of tetradecyltrimethylammonium bromide with bovine serum albumin in different compositions: Effect of temperatures and electrolytes/urea vol.29, pp.None, 2018, https://doi.org/10.1016/j.cjche.2020.07.062
  8. Endophytic Nanotechnology: An Approach to Study Scope and Potential Applications vol.9, pp.None, 2018, https://doi.org/10.3389/fchem.2021.613343
  9. Scrutinizing Self-Assembly, Surface Activity and Aggregation Behavior of Mixtures of Imidazolium Based Ionic Liquids and Surfactants: A Comprehensive Review vol.9, pp.None, 2018, https://doi.org/10.3389/fchem.2021.667941
  10. Aggregation Behavior of Mixed Micellar System of Dodecyl Sulfate‐Based Surface‐Active Ionic Liquids and Anionic Surfactant in Aqueous Media vol.24, pp.2, 2021, https://doi.org/10.1002/jsde.12486