DOI QR코드

DOI QR Code

Application of novel hybrid bioadsorbent, tannin/chitosan/sericite, for the removal of Pb(II) toxic ion from aqueous solution

  • Choi, Hee-Jeong (Department of Health and Environment, Catholic Kwandong University) ;
  • Yu, Sung-Whan (Department of Health and Environment, Catholic Kwandong University)
  • Received : 2018.04.30
  • Accepted : 2018.08.05
  • Published : 2018.11.30

Abstract

We addressed the development of a novel, low-cost, and high-efficient material from hybrid materials, known as microcapsules. Microcapsules are a composite adsorbent made of a mixture of tannin, sericite and chitosan. The FT-IR analysis showed that the microcapsules contain hydroxyl, carboxyl, carbonyl, and amino groups, which play an important role in the adsorption of heavy metals. The microcapsules were able to remove 99% of Pb(II) in 30 min, and obtained a removal efficiency of more than (13-50)%, compared with the single adsorbents of tannin, chitosan, and sericite. In adsorption kinetic analysis, pseudo-second-order adsorption was more suitable than pseudo-first-order adsorption, and chemical adsorption did not limit the adsorption rate of Pb(II) ion. In isothermal adsorption, Langmuir adsorption was more suitable than Freundlich adsorption, and the maximum Langmuir adsorption capacity was 167.82 (mg/g). Furthermore, desorption and reusability studies, as well as the applicability of the material for wastewater treatment, demonstrated that microcapsules offer a promising hybrid material for the efficient removal of significant water pollutants, i.e., Pb(II) from aqueous solutions.

Keywords

Acknowledgement

Supported by : National Research Foundation (NRF) of Korea

References

  1. H. J. Choi, S. W. Yu and K. H. Kim, J. Taiwan. Inst. Chem. Eng., 63, 482 (2016). https://doi.org/10.1016/j.jtice.2016.03.005
  2. H. J. Choi, Water Air Soil Pollut., 226, 1 (2015).
  3. H. Shirzadi and A. Nezamzadeh-Ejhieh, J. Mol. Liq., 230, 221 (2017). https://doi.org/10.1016/j.molliq.2017.01.029
  4. H. A. M. Bacelo, S. C. R. Santos and C. M. S. Botelho, Chem. Eng. J., 303, 575 (2017).
  5. G. Chen, K. J. Shah, L. Shi and P. C. Chiang, Appl. Surf. Sci., 409, 296 (2017). https://doi.org/10.1016/j.apsusc.2017.03.022
  6. A. Alcazar, I. Garrido, E. M. Garcia, A. Lucas, M. Carmona and J. F. Rodriguez, Sep. Purif. Technol., 154, 255 (2015). https://doi.org/10.1016/j.seppur.2015.09.043
  7. J. Duan, J. Wang, T. Guo and J. Gregory, J. Water Process Eng., 4, 224 (2014). https://doi.org/10.1016/j.jwpe.2014.10.008
  8. E. S. Z. El-Ashtoukhy, N. K. Amin and O. Abdekwahab, Desalination, 223(1-3) 162 (2008). https://doi.org/10.1016/j.desal.2007.01.206
  9. B. Liu, X. Lv, X. Meng, G. Yu and D. Wang, Chem. Eng. J., 220, 412 (2013). https://doi.org/10.1016/j.cej.2013.01.071
  10. X. M. Zhan and X. Zhao, Water Res., 37(16), 3905 (2003). https://doi.org/10.1016/S0043-1354(03)00312-9
  11. J. Sanchez-Martin, J. Beltran-Heredia and V. Encinas-Sanchez, Chapter 8, The Role of Colloidal Systems in Environmental Protection, 203 (2014).
  12. J. Sanchez-Martin, J. Beltran-Heredia and P. Gibello-Perez, Chem. Eng. J., 168(3), 1241 (2011). https://doi.org/10.1016/j.cej.2011.02.022
  13. Q. Xu, Y. Wang, L. Jin, Y. Wang and M. Qin, J. Hazard. Mater., 339, 91 (2017). https://doi.org/10.1016/j.jhazmat.2017.06.005
  14. H. Cui, J. Chen, H. Yang, W. Wang, Y. Liu, D. Zou, W. Liu and G. Men, Chem. Eng. J., 232, 372 (2013). https://doi.org/10.1016/j.cej.2013.07.120
  15. R. Karthik and S. Meenakshi, Chem. Eng. J., 263, 168 (2015). https://doi.org/10.1016/j.cej.2014.11.015
  16. J. Deng, Y. Liu, S. Liu, G. Zeng and Z. Yan, J. Colloid Interface Sci., 506, 355 (2017). https://doi.org/10.1016/j.jcis.2017.07.069
  17. H. J. Choi, KSWST J. Wat. Treat., 24(4), 87 (2016).
  18. D. Tiwari, H. U. Kim and S. M. Lee, Sep. Purif. Technol., 57(1), 11 (2007). https://doi.org/10.1016/j.seppur.2007.03.005
  19. H. J. Choi, KSWST J. Wat. Treat., 25(2), 61 (2017). https://doi.org/10.17640/KSWST.2017.25.2.61
  20. G. Garcia-Rosales and A. Colin-Cruz, J. Environ. Manage., 91(11), 2079 (2010). https://doi.org/10.1016/j.jenvman.2010.06.004
  21. I. Sargin and G. Arslan, Int. J. Biol. Macromol., 75, 230 (2015). https://doi.org/10.1016/j.ijbiomac.2015.01.039
  22. M. Li, Z. Zhang, R. Li, J. J. Wang and A. Ali, Int. J. Biol. Macromol., 86, 876 (2016). https://doi.org/10.1016/j.ijbiomac.2016.02.027
  23. S. Y. Lee and H. J. Choi, J. Environ. Manage., 209, 382 (2018). https://doi.org/10.1016/j.jenvman.2017.12.080
  24. L. Chen, G. Zhang, L. Wang, W. Wu and J. Ge, Colloids Surf., A: Physicochem. Eng. Aspects, 450, 1 (2014). https://doi.org/10.1016/j.colsurfa.2014.03.006
  25. H. J. Choi and S. M. Lee, Environ. Sci. Pollut. Res., 22(1), 13404 (2015). https://doi.org/10.1007/s11356-015-4623-3
  26. C. Kulsing, Y. Yang, M. T. Matyska, J. J. Pesek, R. I. Boysen and M. T. W. Hearn, Anal. Chim. Acta, 859, 79 (2015). https://doi.org/10.1016/j.aca.2014.10.055
  27. H. Ren, Z. Gao, D. Wu, J. Jiang, Y. Sun and C. Luo, Carbohydr. Polym., 137, 402 (2016). https://doi.org/10.1016/j.carbpol.2015.11.002
  28. R. R. Pawar, Lalhmunsiama, H. C. Bajaj and S. M. Lee, J. Ind. Eng. Chem., 34, 213 (2016). https://doi.org/10.1016/j.jiec.2015.11.014
  29. Z. Guo, J. Zhang, Y. Kang and H. Liu, Ecotoxicol. Environ. Saf., 145, 442 (2017). https://doi.org/10.1016/j.ecoenv.2017.07.061
  30. P. Pal and A. Pal, J. Mol. Liq., 248, 713 (2017). https://doi.org/10.1016/j.molliq.2017.10.103
  31. I. Yurtsever and A. Sengil, J. Hazard. Mater., 163(1), 58 (2009). https://doi.org/10.1016/j.jhazmat.2008.06.077
  32. J. Maity and S. K. Ray, Carbohydr. Polym., 182, 159 (2018). https://doi.org/10.1016/j.carbpol.2017.10.086
  33. M. El-Sayed and A. A. Nada, J. Water Process Eng., 16, 296 (2017). https://doi.org/10.1016/j.jwpe.2017.02.012
  34. M.Q. Jiang, X.Y. Jin, X.Q. Lu and Z.L. Chen, Desalination, 252(1-3), 33 (2010). https://doi.org/10.1016/j.desal.2009.11.005
  35. D. Liu, Z. Li, Y. Zhu, Z. Li and R. Kumar, Carbohydr. Polym., 111, 469 (2014). https://doi.org/10.1016/j.carbpol.2014.04.018
  36. F. H. M. Luzardo, F. G. Velasco, I. K. S. Correia, P. M. S. Silva and L. C. Salay, Environ. Technol. Innovation, 7, 219 (2017). https://doi.org/10.1016/j.eti.2017.03.002
  37. F. Fadzi, S. Ibrahim and M. A. K. M. Hanafiah, Process Saf. Environ. Prot., 100, 1 (2016). https://doi.org/10.1016/j.psep.2015.12.001
  38. G. Yuvaraja, Munagapati and V. Subbaiah, Int. J. Biol. Macromol., 93, 408 (2016). https://doi.org/10.1016/j.ijbiomac.2016.08.084
  39. F. Zhao, E. Repo, D. Yin and M. E. Sillanpaa, J. Colloid Interface Sci., 409, 174 (2013). https://doi.org/10.1016/j.jcis.2013.07.062
  40. Y. Y. Wang, L. Y. Chai, H. Chang, X. Y. Peng and Y. D. Shu, Trans. Nonferrous. Met. Soc. China, 19, 458 (2009). https://doi.org/10.1016/S1003-6326(08)60295-2

Cited by

  1. Applicability of Composite Beads, Spent Coffee Grounds/Chitosan, for the Adsorptive Removal of Pb(II) from Aqueous Solutions vol.30, pp.5, 2018, https://doi.org/10.14478/ace.2019.1039
  2. Influence of the parameters of chitin deacetylation process on the chitosan obtained from crab shell waste vol.36, pp.11, 2018, https://doi.org/10.1007/s11814-019-0379-7
  3. Assessment of the adsorption kinetics, equilibrium, and thermodynamic for Pb(II) removal using a low‐cost hybrid biowaste adsorbent, eggshell/coffee ground/sericite vol.91, pp.12, 2019, https://doi.org/10.1002/wer.1158
  4. Optimization of chitin extraction procedure from shrimp waste using Taguchi method and chitosan characterization vol.695, pp.1, 2018, https://doi.org/10.1080/15421406.2020.1723902
  5. Fabrication of PAN Electrospun Nanofibers Modified by Tannin for Effective Removal of Trace Cr(III) in Organic Complex from Wastewater vol.12, pp.1, 2018, https://doi.org/10.3390/polym12010210
  6. Green Synthesis of Tannin-Polyethylenimine Adsorbent for Removal of Cu(II) from Aqueous Solution vol.65, pp.11, 2018, https://doi.org/10.1021/acs.jced.0c00720
  7. Tannin-Based Hybrid Materials and Their Applications: A Review vol.25, pp.21, 2018, https://doi.org/10.3390/molecules25214910