Acknowledgement
Supported by : National Natural Science Foundation of China (NSFC), Natural Science Foundation of Fujian Province, Fujian Agriculture and Forestry University, China Postdoctoral Science Foundation, China Scholarship Council (CSC)
References
- Cao, H., Xi, S., Chen, X. and Wang, S. (2016), "Zoom synchrosqueezing transform and iterative demodulation: Methods with application", Mech. Syst. Signal Pr., 2016, 72-73, 695-711. https://doi.org/10.1016/j.ymssp.2015.11.030
- Carmona, R., Hwang, W.L. and Torresani, B. (1997), "Characterization of signals by the ridges of their wavelet transforms", T. Signal Pr., 45(10), 2586-2590. https://doi.org/10.1109/78.640725
- Carmona, R., Hwang, W.L. and Torresani, B. (1999), "Multi-ridge detection and time-frequency reconstruction", IEEE T. Signal Proces., 47(2), 480-492 https://doi.org/10.1109/78.740131
- Chang, S.G., Yu, B. and Vetterli M. (2000), "Adaptive wavelet thresholding for image denoising and compression", IEEE T. Image Processing, 9(9), 1532-1546. https://doi.org/10.1109/83.862633
- Chen, X. and Cui, B. (2016), "Efficient modeling of fiber optic gyroscope drift using improved EEMG and extreme learning machine", Signal Process., 128, 1-7. https://doi.org/10.1016/j.sigpro.2016.03.016
- Daubechies, I., Lu, J.F. and Wu, H.T., (2011), "Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool", Appl. Comput. Harmon. A., 30(2), 243-261. https://doi.org/10.1016/j.acha.2010.08.002
- Delprat, N., Escudie, B., Guillemein, P., Kromland-Martinet, R., Tchanmitchian, P. and Torreain, B. (1992), "Asymptotic wavelet and Gabor analysis: extraction of instantaneous frequencies", IEEE T. Inform. Theory, 38(2), 644-664. https://doi.org/10.1109/18.119728
- Feldman, M. (1994a), "Non-linear system vibration analysis using Hilbert transform-I: free vibration analysis method FREEVIB", Mech. Syst. Signal Pr., 8(2), 119-127. https://doi.org/10.1006/mssp.1994.1011
- Feldman, M. (1994b), "Non-linear system vibration analysis using Hilbert transform-II: forced vibration analysis method FORCEVIB", Mech. Syst. Signal Pr., 8(3), 309-318. https://doi.org/10.1006/mssp.1994.1023
- Feldman, M. and Braun, S. (2017), "Nonlinear vibrating system identification via Hilbert decomposition", Mech. Syst. Signal Pr., 84, 65-96. https://doi.org/10.1016/j.ymssp.2016.03.015
- Feng, Z., Chen, X. and Liang, M. (2015), "Iterative generalized synchrosqueezing transform for fault diagnosis of wind turbine planetary gearbox under nonstationary conditions", Mech. Syst. Signal Pr., 52, 360-375.
- Feng, Z., Liang, M. and Chu, F. (2013), "Recent advances in timefrequency analysis methods for machinery fault diagnosis: A review with application examples", Mech. Syst. Signal Pr., 38, 165-205. https://doi.org/10.1016/j.ymssp.2013.01.017
- Flandrin, P. and Goncalves, P. (1996), "Geometry of affine timefrequency distributions", Appl. Comput. Harmon. A., 3(1), 10-39. https://doi.org/10.1006/acha.1996.0002
- Han, M., Liu, Y., Xi, J. and Guo. W. (2007), "Noise smoothing for nonlinear time series using wavelet soft threshold", IEEE Signal Proc. Let., 14(1): 62-65. https://doi.org/10.1109/LSP.2006.881518
- Hou, Z., Hera, A. and Shinde, A. (2006), "Wavelet-based structural health monitoring of earthquake excited structures", Comput.-Aided Civil Infrastruct. Eng., 21(4), 268-79. https://doi.org/10.1111/j.1467-8667.2006.00434.x
- Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H. and Zheng, Q. (1998), "The empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series analysis", P. R. Soc. London-Series, 454(1971), 903-995. https://doi.org/10.1098/rspa.1998.0193
- Hussain, Z.M. and Boashash, B. (2002), "Adaptive instantaneous frequency estimation of multicomponent FM signals using quadratic time-frequency distributions", IEEE T. Signal Process., 50(8), 1866-1876. https://doi.org/10.1109/TSP.2002.800406
- Kijewski, K. and Kareem, A. (2003), "Wavelet transforms for system identification in civil engineering", Comput.-Aided Civil Infrastruct. Eng., 18(5), 339-355. https://doi.org/10.1111/1467-8667.t01-1-00312
- Le, T.P. and Argoul, P. (2015), "Distinction between harmonic and structural components in ambient excitation tests using the time-frequency domain decomposition technique", Mech. Syst. Signal Pr., 52-53, 29-45. https://doi.org/10.1016/j.ymssp.2014.07.008
- Lei, Y., Lin, J., He, Z. and Zuo, M.J. (2013), "A review on empirical mode decomposition in fault diagnosis of rotating machinery", Mech. Syst. Signal Pr., 35, 108-126. https://doi.org/10.1016/j.ymssp.2012.09.015
- Li, C. and Liang, M. (2012), "A generalized synchrosqueezing transform for enhancing signal time-frequency representation", Signal Process., 92(9), 2264-2274. https://doi.org/10.1016/j.sigpro.2012.02.019
- Liebling, M., Bernhard, T.F., Bachmann, A.H., Froehly, L., Lasser, T. and Unser, M. (2005), "Continuous wavelet transform ridge extraction for spectral interferometry imaging". Proceedings of the SPIE, Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine IX, San Jose, CA, USA, April.
- Liu, H., Cartwright, A.N. and Basaran, C. (2004), "Moire interferogram phase extraction: a ridge detection algorithm for continuous wavelet transforms", Appl. Optics, 43(4), 850-857. https://doi.org/10.1364/AO.43.000850
- Liu, J.L., Wang, Z.C., Ren, W.X. and Li, X.X. (2015), "Structural time-varying damage detection using synchrosqueezing wavelet transform", Smart Struct. Syst., 15(1), 119-133. https://doi.org/10.12989/sss.2015.15.1.119
- Ni, S.H., Yang, Y.Z. and Tsai, P.H. (2017), "Evaluation of pile defects using complex continuous wavelet transform analysis", NDT&E Int., 87, 50-59. https://doi.org/10.1016/j.ndteint.2017.01.007
- Oberlin, T., Meignen, S. and Perrier, V. (2015), "Second-order synchrosqueezing transform or invertible reassignment? Towards ideal time-frequency representations", IEEE T. Signal Process., 63(5), 1335-1344. https://doi.org/10.1109/TSP.2015.2391077
- Padovese, L.R. (2004), "Hybrid time-frequency methods for nonstationary mechanical signal analysis", Mech. Syst. Signal Pr., 18, 1047-1064. https://doi.org/10.1016/j.ymssp.2003.12.003
- Peng, Z.K., Zhang, W.M., Lang, Z.Q., Meng, G. and Chu, F.L. (2012), "Time-frequency data fusion technique with application to vibration signal analysis", Mech. Syst. Signal Pr., 29, 164-173. https://doi.org/10.1016/j.ymssp.2011.11.019
- Pham, D.H. and Meignen, S. (2017), "High-order synchrosqueezing transform for multicomponent signals analysis-with an application to gravitational-wave signal", IEEE T. Signal Process., 65(12), 3168-3177. https://doi.org/10.1109/TSP.2017.2686355
- Qin, Y., Mao, Y. and Tang, B. (2017), "Multicomponent decomposition by wavelet modulus maxima and synchronous detection", Mechanic Syst. Signal Pr., 91, 57-80. https://doi.org/10.1016/j.ymssp.2017.01.002
- Shi, Z.Y., Law, S.S. and Xu, X. (2009), "Identification of linear time-varying mdof dynamic systems from forced excitation using Hilbert transform and EMG method", J. Sound Vib., 321, 572-589 https://doi.org/10.1016/j.jsv.2008.10.005
- Su, W.C., Liu, C.Y. and Huang, C.S. (2014), "Identification of instantaneous modal parameter of time-varying systems via a wavelet-based approach and its application", Comput.-Aided Civil Infrastruct. Eng., 29(4), 279-298. https://doi.org/10.1111/mice.12037
- Wang, C., Ren, W.X., Wang, Z.C. and Zhu H.P., (2013), "Instantaneous frequency identification of time-varying structures by continuous wavelet transform", Eng. Struct., 52(9), 17-25. https://doi.org/10.1016/j.engstruct.2013.02.006
- Xu, X., Shi, Z.Y. and You, Q. (2012), "Identification of linear time-varying systems using a wavelet-based state-space method", Mech. Syst. Signal Pr., 26, 91-103. https://doi.org/10.1016/j.ymssp.2011.07.005
- Yan, W.J. and Ren, W.X. (2013), "Use of continuous-wavelet transmissibility for structural operational modal analysis", J. Struct. Eng., 139(9), 1444-1456. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000711
- Zheng, J., Pan, H., Yang, S. and Cheng, J. (2017), "Adaptive parameterless empirical wavelet transform based timefrequency analysis method and its application to rotor rubbing fault diagnosis", Signal Process., 130, 305-314. https://doi.org/10.1016/j.sigpro.2016.07.023
Cited by
- Deep learning for bridge load capacity estimation in post-disaster and -conflict zones vol.6, pp.12, 2018, https://doi.org/10.1098/rsos.190227