DOI QR코드

DOI QR Code

Instantaneous frequency extraction in time-varying structures using a maximum gradient method

  • Liu, Jing-liang (College of Transportation and Civil Engineering, Fujian Agriculture and Forestry University) ;
  • Wei, Xiaojun (School of Engineering, University of Warwick) ;
  • Qiu, Ren-Hui (College of Transportation and Civil Engineering, Fujian Agriculture and Forestry University) ;
  • Zheng, Jin-Yang (College of Transportation and Civil Engineering, Fujian Agriculture and Forestry University) ;
  • Zhu, Yan-Jie (School of Engineering, University of Warwick) ;
  • Laory, Irwanda (School of Engineering, University of Warwick)
  • 투고 : 2018.04.11
  • 심사 : 2018.06.20
  • 발행 : 2018.09.25

초록

A method is proposed for the identification of instantaneous frequencies (IFs) in time-varying structures. The proposed method combines a maximum gradient algorithm and a smoothing operation. The maximum gradient algorithm is designed to extract the wavelet ridges of response signals. The smoothing operation, based on a polynomial curve fitting algorithm and a threshold method, is employed to reduce the effects of random noises. To verify the effectiveness and accuracy of the proposed method, a numerical example of a signal with two frequency modulated components is investigated and an experimental test on a steel cable with time-varying tensions is also conducted. The results demonstrate that the proposed method can extract IFs from the noisy multi-component signals and practical response signals successfully. In addition, the proposed method can provide a better IF identification results than the standard synchrosqueezing wavelet transform.

키워드

과제정보

연구 과제 주관 기관 : National Natural Science Foundation of China (NSFC), Natural Science Foundation of Fujian Province, Fujian Agriculture and Forestry University, China Postdoctoral Science Foundation, China Scholarship Council (CSC)

참고문헌

  1. Cao, H., Xi, S., Chen, X. and Wang, S. (2016), "Zoom synchrosqueezing transform and iterative demodulation: Methods with application", Mech. Syst. Signal Pr., 2016, 72-73, 695-711. https://doi.org/10.1016/j.ymssp.2015.11.030
  2. Carmona, R., Hwang, W.L. and Torresani, B. (1997), "Characterization of signals by the ridges of their wavelet transforms", T. Signal Pr., 45(10), 2586-2590. https://doi.org/10.1109/78.640725
  3. Carmona, R., Hwang, W.L. and Torresani, B. (1999), "Multi-ridge detection and time-frequency reconstruction", IEEE T. Signal Proces., 47(2), 480-492 https://doi.org/10.1109/78.740131
  4. Chang, S.G., Yu, B. and Vetterli M. (2000), "Adaptive wavelet thresholding for image denoising and compression", IEEE T. Image Processing, 9(9), 1532-1546. https://doi.org/10.1109/83.862633
  5. Chen, X. and Cui, B. (2016), "Efficient modeling of fiber optic gyroscope drift using improved EEMG and extreme learning machine", Signal Process., 128, 1-7. https://doi.org/10.1016/j.sigpro.2016.03.016
  6. Daubechies, I., Lu, J.F. and Wu, H.T., (2011), "Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool", Appl. Comput. Harmon. A., 30(2), 243-261. https://doi.org/10.1016/j.acha.2010.08.002
  7. Delprat, N., Escudie, B., Guillemein, P., Kromland-Martinet, R., Tchanmitchian, P. and Torreain, B. (1992), "Asymptotic wavelet and Gabor analysis: extraction of instantaneous frequencies", IEEE T. Inform. Theory, 38(2), 644-664. https://doi.org/10.1109/18.119728
  8. Feldman, M. (1994a), "Non-linear system vibration analysis using Hilbert transform-I: free vibration analysis method FREEVIB", Mech. Syst. Signal Pr., 8(2), 119-127. https://doi.org/10.1006/mssp.1994.1011
  9. Feldman, M. (1994b), "Non-linear system vibration analysis using Hilbert transform-II: forced vibration analysis method FORCEVIB", Mech. Syst. Signal Pr., 8(3), 309-318. https://doi.org/10.1006/mssp.1994.1023
  10. Feldman, M. and Braun, S. (2017), "Nonlinear vibrating system identification via Hilbert decomposition", Mech. Syst. Signal Pr., 84, 65-96. https://doi.org/10.1016/j.ymssp.2016.03.015
  11. Feng, Z., Chen, X. and Liang, M. (2015), "Iterative generalized synchrosqueezing transform for fault diagnosis of wind turbine planetary gearbox under nonstationary conditions", Mech. Syst. Signal Pr., 52, 360-375.
  12. Feng, Z., Liang, M. and Chu, F. (2013), "Recent advances in timefrequency analysis methods for machinery fault diagnosis: A review with application examples", Mech. Syst. Signal Pr., 38, 165-205. https://doi.org/10.1016/j.ymssp.2013.01.017
  13. Flandrin, P. and Goncalves, P. (1996), "Geometry of affine timefrequency distributions", Appl. Comput. Harmon. A., 3(1), 10-39. https://doi.org/10.1006/acha.1996.0002
  14. Han, M., Liu, Y., Xi, J. and Guo. W. (2007), "Noise smoothing for nonlinear time series using wavelet soft threshold", IEEE Signal Proc. Let., 14(1): 62-65. https://doi.org/10.1109/LSP.2006.881518
  15. Hou, Z., Hera, A. and Shinde, A. (2006), "Wavelet-based structural health monitoring of earthquake excited structures", Comput.-Aided Civil Infrastruct. Eng., 21(4), 268-79. https://doi.org/10.1111/j.1467-8667.2006.00434.x
  16. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H. and Zheng, Q. (1998), "The empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series analysis", P. R. Soc. London-Series, 454(1971), 903-995. https://doi.org/10.1098/rspa.1998.0193
  17. Hussain, Z.M. and Boashash, B. (2002), "Adaptive instantaneous frequency estimation of multicomponent FM signals using quadratic time-frequency distributions", IEEE T. Signal Process., 50(8), 1866-1876. https://doi.org/10.1109/TSP.2002.800406
  18. Kijewski, K. and Kareem, A. (2003), "Wavelet transforms for system identification in civil engineering", Comput.-Aided Civil Infrastruct. Eng., 18(5), 339-355. https://doi.org/10.1111/1467-8667.t01-1-00312
  19. Le, T.P. and Argoul, P. (2015), "Distinction between harmonic and structural components in ambient excitation tests using the time-frequency domain decomposition technique", Mech. Syst. Signal Pr., 52-53, 29-45. https://doi.org/10.1016/j.ymssp.2014.07.008
  20. Lei, Y., Lin, J., He, Z. and Zuo, M.J. (2013), "A review on empirical mode decomposition in fault diagnosis of rotating machinery", Mech. Syst. Signal Pr., 35, 108-126. https://doi.org/10.1016/j.ymssp.2012.09.015
  21. Li, C. and Liang, M. (2012), "A generalized synchrosqueezing transform for enhancing signal time-frequency representation", Signal Process., 92(9), 2264-2274. https://doi.org/10.1016/j.sigpro.2012.02.019
  22. Liebling, M., Bernhard, T.F., Bachmann, A.H., Froehly, L., Lasser, T. and Unser, M. (2005), "Continuous wavelet transform ridge extraction for spectral interferometry imaging". Proceedings of the SPIE, Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine IX, San Jose, CA, USA, April.
  23. Liu, H., Cartwright, A.N. and Basaran, C. (2004), "Moire interferogram phase extraction: a ridge detection algorithm for continuous wavelet transforms", Appl. Optics, 43(4), 850-857. https://doi.org/10.1364/AO.43.000850
  24. Liu, J.L., Wang, Z.C., Ren, W.X. and Li, X.X. (2015), "Structural time-varying damage detection using synchrosqueezing wavelet transform", Smart Struct. Syst., 15(1), 119-133. https://doi.org/10.12989/sss.2015.15.1.119
  25. Ni, S.H., Yang, Y.Z. and Tsai, P.H. (2017), "Evaluation of pile defects using complex continuous wavelet transform analysis", NDT&E Int., 87, 50-59. https://doi.org/10.1016/j.ndteint.2017.01.007
  26. Oberlin, T., Meignen, S. and Perrier, V. (2015), "Second-order synchrosqueezing transform or invertible reassignment? Towards ideal time-frequency representations", IEEE T. Signal Process., 63(5), 1335-1344. https://doi.org/10.1109/TSP.2015.2391077
  27. Padovese, L.R. (2004), "Hybrid time-frequency methods for nonstationary mechanical signal analysis", Mech. Syst. Signal Pr., 18, 1047-1064. https://doi.org/10.1016/j.ymssp.2003.12.003
  28. Peng, Z.K., Zhang, W.M., Lang, Z.Q., Meng, G. and Chu, F.L. (2012), "Time-frequency data fusion technique with application to vibration signal analysis", Mech. Syst. Signal Pr., 29, 164-173. https://doi.org/10.1016/j.ymssp.2011.11.019
  29. Pham, D.H. and Meignen, S. (2017), "High-order synchrosqueezing transform for multicomponent signals analysis-with an application to gravitational-wave signal", IEEE T. Signal Process., 65(12), 3168-3177. https://doi.org/10.1109/TSP.2017.2686355
  30. Qin, Y., Mao, Y. and Tang, B. (2017), "Multicomponent decomposition by wavelet modulus maxima and synchronous detection", Mechanic Syst. Signal Pr., 91, 57-80. https://doi.org/10.1016/j.ymssp.2017.01.002
  31. Shi, Z.Y., Law, S.S. and Xu, X. (2009), "Identification of linear time-varying mdof dynamic systems from forced excitation using Hilbert transform and EMG method", J. Sound Vib., 321, 572-589 https://doi.org/10.1016/j.jsv.2008.10.005
  32. Su, W.C., Liu, C.Y. and Huang, C.S. (2014), "Identification of instantaneous modal parameter of time-varying systems via a wavelet-based approach and its application", Comput.-Aided Civil Infrastruct. Eng., 29(4), 279-298. https://doi.org/10.1111/mice.12037
  33. Wang, C., Ren, W.X., Wang, Z.C. and Zhu H.P., (2013), "Instantaneous frequency identification of time-varying structures by continuous wavelet transform", Eng. Struct., 52(9), 17-25. https://doi.org/10.1016/j.engstruct.2013.02.006
  34. Xu, X., Shi, Z.Y. and You, Q. (2012), "Identification of linear time-varying systems using a wavelet-based state-space method", Mech. Syst. Signal Pr., 26, 91-103. https://doi.org/10.1016/j.ymssp.2011.07.005
  35. Yan, W.J. and Ren, W.X. (2013), "Use of continuous-wavelet transmissibility for structural operational modal analysis", J. Struct. Eng., 139(9), 1444-1456. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000711
  36. Zheng, J., Pan, H., Yang, S. and Cheng, J. (2017), "Adaptive parameterless empirical wavelet transform based timefrequency analysis method and its application to rotor rubbing fault diagnosis", Signal Process., 130, 305-314. https://doi.org/10.1016/j.sigpro.2016.07.023

피인용 문헌

  1. Deep learning for bridge load capacity estimation in post-disaster and -conflict zones vol.6, pp.12, 2018, https://doi.org/10.1098/rsos.190227