DOI QR코드

DOI QR Code

Damage localization and quantification in beams from slope discontinuities in static deflections

  • Ma, Qiaoyu (Department of Continuum Mechanics and Structural Analysis, Escuela Tecnica Superior de Ingenieria, Universidad de Sevilla) ;
  • Solis, Mario (Department of Continuum Mechanics and Structural Analysis, Escuela Tecnica Superior de Ingenieria, Universidad de Sevilla)
  • Received : 2018.03.20
  • Accepted : 2018.07.03
  • Published : 2018.09.25

Abstract

This paper presents a flexibility based method for damage identification from static measurements in beam-type structures. The response of the beam at the Damaged State is decomposed into the response at the Reference State plus the response at an Incremental State, which represents the effect of damage. The damage is localized by detecting slope discontinuities in the deflection of the structure at the Incremental State. A denoising filtering technique is applied to reduce the effect of experimental noise. The extent of the damage is estimated through comparing the experimental flexural stiffness of the damaged cross-sections with the corresponding values provided by analytical models of cracked beams. The paper illustrates the method by showing a numerical example with two cracks and an experimental case study of a simply supported steel beam with one artificially introduced notch type crack at three damage levels. A Digital Image Correlation system was used to accurately measure the deflections of the beam at a dense measurement grid under a set of point loads. The results indicate that the method can successfully detect and quantify a small damage from the experimental data.

Keywords

References

  1. Abdel Wahab, M.M. and De Roeck, G. (1999), "Damage detection in bridges using modal curvatures: application to a real damage scenario", J. Sound Vib., 226, 217-235. https://doi.org/10.1006/jsvi.1999.2295
  2. Abdo, M.A.B. (2012), "Parametric study of using only static response in structural damage detection", Eng. Struct., 34, 124-131. https://doi.org/10.1016/j.engstruct.2011.09.027
  3. Abdo, M.A.B. and Hori, M. (2002), "A numerical study of structural damage detection using changes in the rotation of mode shapes", J. Sound Vib., 251, 227-239. https://doi.org/10.1006/jsvi.2001.3989
  4. Babu, K.R.P., Kumar, B.R., Narayana, K.L. and Rao, K.M. (2015), "Multiple crack detection in beams from the differences in curvature mode shapes", APRN J. Eng. Appl. Sci., 10, 1701-1710.
  5. Bakhtiari-Nejad, F., Rahai, A. and Esfandiari, A. (2005), "A structural damage detection method using static noisy data", Eng. Struct., 27, 1784-1793. https://doi.org/10.1016/j.engstruct.2005.04.019
  6. Caddemi, S. and Morassi, A. (2011), "Detecting multiple open cracks in elastic beams by static tests", J. Eng. Mech., 137, 113-124. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000209
  7. Caddemi, S. and Morassi, A. (2007), "Crack detection in elastic beams by static measurements", Int. J. Solids Struct., 44, 5301-5315. https://doi.org/10.1016/j.ijsolstr.2006.12.033
  8. Cao, M., Radzienski, M., Xu, W. and Ostachowicz, W. (2014), "Identification of multiple damage in beams based on robust curvature mode shapes", Mech. Syst. Signal Pr., 46, 468-480. https://doi.org/10.1016/j.ymssp.2014.01.004
  9. Cao, M.S., Xu, W., Ren, W.X., Ostachowicz, W., Sha, G.G. and Pan, L.X. (2016), "A concept of complex-wavelet modal curvature for detecting multiple cracks in beams under noisy conditions", Mech. Syst. Signal Pr., 76-77, 555-575. https://doi.org/10.1016/j.ymssp.2016.01.012
  10. Chang, P.C., Flatau, A. and Liu, S.C. (2003), "Review paper: Health monitoring of civil infrastructure", Struct. Health. Monit., 2, 257-267. https://doi.org/10.1177/1475921703036169
  11. Choi, I.Y., Lee, J.S., Choi, E. and Cho, H.N. (2004), "Development of elastic damage load theorem for damage detection in a statically determinate beam", Comput. Struct., 82, 2483-2492. https://doi.org/10.1016/j.compstruc.2004.07.003
  12. Chung, W., Kim, S., Kim, N.S. and Lee, H. (2008), "Deflection estimation of a full scale prestressed concrete girder using longgauge fiber optic sensors", Constr. Build. Mater., 22, 394-401. https://doi.org/10.1016/j.conbuildmat.2006.08.007
  13. Dawari, V.B. and Vesmawala, G.R. (2013), "Structural damage identification using modal curvature differences", IOSR-JMCE 33-38.
  14. Dimarogonas, A.D. (1996), "Vibration of cracked structures: A state of the art review", Eng. Fract. Mech., 55, 831-857. https://doi.org/10.1016/0013-7944(94)00175-8
  15. Dimarogonas, A.D., Paipetis, S.A. and Chondros, T.G. (2013), Analytical Methods in Rotor Dynamics, (2nd Ed.), Springer.
  16. Doebling, S.W., Farrar, C.R. and Prime, M.B. (1998), "A summary review of vibration-based damage identification methods", Shock Vib. Dig., 30, 91-105. https://doi.org/10.1177/058310249803000201
  17. Fan, W. and Qiao, P. (2011), "Vibration-based damage identification methods: A review and comparative study", Struct. Health. Monit., 10, 83-111. https://doi.org/10.1177/1475921710365419
  18. Farrar, C.R. and Jauregui, D.A. (1998a), "Comparative study of damage identification algorithms applied to a bridge: I. Experiment", Smart Mater. Struct., 7, 704-719. https://doi.org/10.1088/0964-1726/7/5/013
  19. Farrar, C.R. and Jauregui, D.A. (1998b), "Comparative study of damage identification algorithms applied to a bridge: II. Numerical study", Smart Mater. Struct., 7, 720-731. https://doi.org/10.1088/0964-1726/7/5/014
  20. Gudmundson, P. (1983), "The dynamic behaviour of slender structures with cross-sectional cracks", J. Mech. Phys. Solids, 31, 329-345. https://doi.org/10.1016/0022-5096(83)90003-0
  21. Hjelmstad, K.D. and Shin, S. (1997), "Damage detection and assessment of structures from static response", J. Eng. Mech., 123, 568-576. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:6(568)
  22. Jiang, R., Jauregui, D.V. and White, K.R. (2008), "Close-range photogrammetry applications in bridge measurement: Literature review", Measurement, 41, 823-834. https://doi.org/10.1016/j.measurement.2007.12.005
  23. Kim, J.T., Ryu, Y.S., Cho, H.M. and Stubbs, N. (2003), "Damage identification in beam-type structures: frequency-based method vs mode-shape-based method", Eng. Struct., 25, 57-67. https://doi.org/10.1016/S0141-0296(02)00118-9
  24. Kim, S.J., Koh, K., Boyd, S. and Gorinevsky, D. (2009), "l1Trend filtering", SIAM Rev., 51, 339-360. https://doi.org/10.1137/070690274
  25. Koh, K., Kim, S.J. and Boyd, S. (2008), Software for l1 Trending Filtering, https://stanford.edu/-boyd/l1_tf/.
  26. Pandey, A.K., Biswas, M. and Samman, M.M. (1991), "Damage detection from changes in curvature mode shapes", J. Sound Vib., 145, 321-332. https://doi.org/10.1016/0022-460X(91)90595-B
  27. Rizos, P.F., Aspragathos, N. and Dimarogonas, A.D. (1990), "Identification of crack location and magnitude in a cantilever beam from the vibration modes", J. Sound Vib., 138, 381-388. https://doi.org/10.1016/0022-460X(90)90593-O
  28. Rucka, M. and Wilde, K. (2006a), "Application of continuous wavelet transform in vibration based damage detection method for beams and plates", J. Sound Vib., 297, 536-550. https://doi.org/10.1016/j.jsv.2006.04.015
  29. Rucka, M. and Wilde, K. (2006b), "Crack identification using wavelets on experimental static deflection profiles", Eng. Struct., 28, 279-288. https://doi.org/10.1016/j.engstruct.2005.07.009
  30. Salawu, O.S. (1997), "Detection of structural damage through changes in frequency: a review", Eng. Struct., 19, 718-723. https://doi.org/10.1016/S0141-0296(96)00149-6
  31. Seyedpoor, S.M. and Yazdanpanah, O. (2014), "An efficient indicator for structural damage localization using the change of strain energy based on static noisy data", Appl. Math. Model., 38, 2661-2672. https://doi.org/10.1016/j.apm.2013.10.072
  32. Solis, M., Algaba, M. and Galvin, P. (2013), "Continuous wavelet analysis of mode shapes differences for damage detection", Mech. Syst. Signal Pr., 40, 645-666. https://doi.org/10.1016/j.ymssp.2013.06.006
  33. Sousa, H., Cavadas, F., Henriques, A., Bento, J. and Figueiras, J. (2013), "Bridge deflection evaluation using strain and rotation measurements", Smart Struct. Syst., 11(4), 365-386. https://doi.org/10.12989/sss.2013.11.4.365
  34. Stohr, S., Link, M., Rohrmann, R. and Rucker, W. (2006), "Damage detection based on static measurements of bridge structures", Proceedings of the Int. Modal Anal. Conf. IMAC XXIV, Orlando, United States, Feburary.
  35. Whalen, T.M. (2008), "The behavior of higher order mode shape derivatives in damaged, beam-like structures", J. Sound Vib., 309, 426-464. https://doi.org/10.1016/j.jsv.2007.07.054
  36. Xu, W., Zhu, W.D., Smith, S.A. and Cao, M.S. (2016), "Structural damage detection using slopes of longitudinal vibration shapes", J. Vib. Acoust., 138, 034501. https://doi.org/10.1115/1.4031996
  37. Yan, Y.J., Cheng, L., Wu, Z.Y. and Yam, L.H. (2007), "Development in vibration-based structural damage detection technique", Mech. Syst. Signal Pr., 21, 2198-2211. https://doi.org/10.1016/j.ymssp.2006.10.002
  38. Yang, Q.W. and Sun, B.X. (2010), "Structural damage localization and quantification using static test data", Struct. Health. Monit., 10, 381-389.
  39. Yeo, I., Shin, S., Lee, H.S. and Chang, S. (2000), "Statistical damage assessment of framed structures from static responses", J. Eng. Mech., 126, 414-421. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:4(414)
  40. Yu, Y., Liu, H., Li, D., Mao, X. and Ou, J. (2013), "Bridge deflection measurement using wireless mems inclination sensor systems", Int. J. Smart Sens. Intell. Syst., 6, 38-57.